留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直定向螺旋碳纳米管阵列的大量合成

张继成 唐永建 易勇 马康夫 周民杰 吴卫东 王朝阳

张继成, 唐永建, 易勇, 马康夫, 周民杰, 吴卫东, 王朝阳. 垂直定向螺旋碳纳米管阵列的大量合成. 新型炭材料, 2016, 31(6): 568-573. doi: 10.1016/S1872-5805(16)60032-X
引用本文: 张继成, 唐永建, 易勇, 马康夫, 周民杰, 吴卫东, 王朝阳. 垂直定向螺旋碳纳米管阵列的大量合成. 新型炭材料, 2016, 31(6): 568-573. doi: 10.1016/S1872-5805(16)60032-X
ZHANG Ji-cheng, TANG Yong-jian, YI Yong, MA Kang-fu, ZHOU Min-jie, WU Wei-dong, WANG Chao-yang. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays. New Carbon Mater., 2016, 31(6): 568-573. doi: 10.1016/S1872-5805(16)60032-X
Citation: ZHANG Ji-cheng, TANG Yong-jian, YI Yong, MA Kang-fu, ZHOU Min-jie, WU Wei-dong, WANG Chao-yang. Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays. New Carbon Mater., 2016, 31(6): 568-573. doi: 10.1016/S1872-5805(16)60032-X

垂直定向螺旋碳纳米管阵列的大量合成

doi: 10.1016/S1872-5805(16)60032-X
基金项目: 国家自然科学基金(60908023,11075143/A050609);中国工程物理研究院超精密加工技术重点实验室基金(ZZ15003).
详细信息
    作者简介:

    张继成,博士,副研究员.E-mail:zhangjccaep@126.com

    通讯作者:

    张继成,博士,副研究员.E-mail:zhangjccaep@126.com

  • 中图分类号: TQ127.1+1

Large-scale synthesis of novel vertically-aligned helical carbon nanotube arrays

Funds: National Natural Science Foundation of China (60908023, 11075143/A050609); Key Laboratory of Ultra-Precision Machining Technology Foundation of CAEP (ZZ15003).
  • 摘要: 以二甲苯作为碳源、二茂铁作为催化剂前驱体,采用催化裂解法大规模合成了具有不同螺距和螺旋直径、垂直于基底生长的碳纳米管阵列。通过拉曼光谱和高分辨透射电镜测试分析,结果表明,所制备的碳纳米管阵列分布均匀、石墨化程度高,且沿其长度方向具有不同的螺距和螺旋直径。由于在碳纳米管的生长过程中,会伴随着碳五环、碳七环与碳六环的生成,而碳六环是形成石墨晶格的基本结构单元。当碳六环网络结构中出现碳五环和碳七环时,螺旋形的碳纳米管就会形成。实验中螺旋形碳纳米管的产率约为4.5 mg/cm2·h。螺旋形碳纳米管在高性能传感器、谐振器、纳米机械弹簧、电感等纳米电子器件中具有潜在的应用价值。
  • Zhang M, Fang S L, Zakhidov A A, et al. Strong, transparent, multifunctional, carbon nanotube sheets[J]. Science, 2005, 309(5738):1215-1219.
    Michael F L, De Volder, Sameh H, et al. Carbon nanotubes:Present and future commercial applications[J]. Science, 2013, 339:535-539.
    Pan J Y, Chen C Y, Gao Y L, et al. Improved field emission characteristics of screen-printed CNT-FED cathode by interfusing Fe/Ni nano-grains[J]. Displays, 2009, (30):114-118.
    XU Yao, ZHAN Liang, WANG Yun, et al. Fluorinated graphene as a cathode material for high performance primary lithium ion batteries[J]. New Carbon Materials, 2015, 30(1):79-85.
    Phaedon Avouris. Carbon nanotube electronics[J]. Chemical Physics, 2002, 281(2-3):429-445.
    ZHENG Wei, QI Tao, ZHANG Yong-chao, et al. Fabrication and characterization of a multi-walled carbon nanotube-based counter electrode for dye-sensitized solar cells[J]. New Carbon Materials, 2015, 30(5):391-396.
    Nicole Grobert. Carbon nanotubes-becoming clean[J]. Materials Today, 2007, 10(1-2):28-35.
    Qin Y, Kim Y, Zhang L B. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates[J], Small, 2010, 6(8):910-914.
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, (354):56-58.
    Sigeo Ihara, Satoshi Itoh, Jun-ichi Kitakami. Toroidal forms of graphitic carbon[J]. Phys ReV B 1993, 47(19):12908-12911.
    Dunlap B I. Connecting carbon tubules[J]. Phys Rev B, 1992, 46(2):1933-1936.
    Zhang M, Li J. Carbon nanotube in different shapes[J]. Materials Today, 2009, 12(6):12-18.
    Ahmed Shaikjee, Neil J Coville. The synthesis, properties and uses of carbon materials with helical morphology[J]. Journal of Advanced Research, 2012, 3:195-223.
    Szabó A, Fonseca A, Nagy J B. Synthesis, properties and applications of helical carbon nanotubes[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2005, 13(S1):139-146.
    Tang N J, Wen J F, Zhang Y. Helical carbon nanotubes:Catalytic particle size-dependent growth and magnetic properties[J]. Acs Nano, 2010, 4(1):241-250.
    Prabhakar R B. Electrical properties and applications of carbon nanotube structures[J]. Journal of Nanoscience and Nanotechnology, 2007, 7:1-29.
    Wen J F, Zhang Y, Tang N J, et al. Synthesis, photoluminescence, and magnetic properties of nitrogen doping helical carbon nanotubes[J]. J Phys Chem C, 2011, 115:12329-12334.
    Qi X S, Zhong W, Deng Y, et al. Characterization and magnetic properties of helical carbon nanotubes and carbon nanobelts synthesized in acetylene decomposition over Fe-Cu nanoparticles at 450oC[J]. J Phys Chem C, 2009, 113:15934-15940.
    R Byron Pipes, Pascal Hubert. Helical carbon nanotube arrays:mechanical properties[J]. Composites Science and Technology, 2002, 62(3):419-428.
    Philip G C, Phaedon A. Nanotubes for Electronics[J]. Scientific American, 2000:62-69.
    Kong J, Zhou C, Morpurgo A. Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes[J]. Appl Phys A, 1999, 69:305-308.
    Moretadha J K, Jaber S A, Fyath R S. Performance investigation of loop and helical carbon nanotube antennas[J]. Journal of Emerging Trends in Computing and Information Sciences, 2012, 3(12):1606-1613.
    Itoh S, Ihara S, Kitakami J. Toroidal form of carbon C360[J]. Phys ReV B, 1993, 47(3):1703-1704.
    Itoh S, Ihara S, Kitakami J. Helically coiled cage forms of graphitic carbon[J]. Phys Rev B, 1993, 48(8):5643-5647.
    Itoh S, Ihara S. Toroidal forms of graphitic carbon II Elongated tori[J]. Phys Rev B, 1993, 48(11):8323-8328.
    Zhang X B, Zhang X F, Bernaerts D, et al. The texture of catalytically grown coil-shaped carbon nanotubules[J]. Europhys Lett, 1994, 27:141-146.
    Qin Y H, Zhang Y H, Sun X. Synthesis of helical and straight carbon nanofibers by chemical vapor deposition using alkali chloride catalysts[J]. Microchim Acta, 2009, 164:425-430.
    Zhang Q, Zhao M Q, Tang D M. Carbon-nanotube-array double helices[J]. Angew Chem Int Ed, 2010, 49:3642-3645.
    Bajpai V, Dai L M, Ohashi T. Large-scale synthesis of perpendicularly aligned helical carbon nanotubes[J]. J Am Chem Soc, 2004, 126:5070-5071.
    Rao A M, Richter E, Bandow S, et al. Diameter-selective raman scattering from vibrational modes in carbon nanotubes[J]. Science, 1997, (275):187-191.
    H Kuzmany, W Plank, M Hulman, et al. Determination of SWCNT diameters from the Raman response of the radial breathing mode[J]. The European Physical Journal B, 2001,22:307-320.
    Devin Conroy, Anna Moisala, Silvana Cardoso, et al. Carbon nanotube reactor:Ferrocene decomposition, iron particle growth, nanotube aggregation and scale-up[J]. Chemical Engineering Science, 2010, (65):2965-2977.
    Kalpana Awasthi, Rajesh Kumar, Himanshu Raghubanshi. Synthesis of nano-carbon (nanotubes, nanofibres, graphene) materials[J]. Bull Mater Sci, 2011, 34(4):607-614.
    Li X S, Cao A Y, Jung Y J, et al. Bottom-up growth of carbon nanotube multilayers:unprecedented growth[J]. Nano Lett, 2005, 5(10):1997-2000.
  • 加载中
图(1)
计量
  • 文章访问数:  656
  • HTML全文浏览量:  87
  • PDF下载量:  578
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-29
  • 录用日期:  2016-12-26
  • 修回日期:  2016-12-03
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回