留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔盐堆用超细颗粒石墨结构和熔盐浸渗研究

张文婷 张宝亮 宋金亮 戚威 贺秀杰 刘占军 连鹏飞 贺周同 高丽娜 夏汇浩 刘向东 周兴泰 孙立斌 吴莘馨

张文婷, 张宝亮, 宋金亮, 戚威, 贺秀杰, 刘占军, 连鹏飞, 贺周同, 高丽娜, 夏汇浩, 刘向东, 周兴泰, 孙立斌, 吴莘馨. 熔盐堆用超细颗粒石墨结构和熔盐浸渗研究. 新型炭材料, 2016, 31(6): 585-593. doi: 10.1016/S1872-5805(16)60034-3
引用本文: 张文婷, 张宝亮, 宋金亮, 戚威, 贺秀杰, 刘占军, 连鹏飞, 贺周同, 高丽娜, 夏汇浩, 刘向东, 周兴泰, 孙立斌, 吴莘馨. 熔盐堆用超细颗粒石墨结构和熔盐浸渗研究. 新型炭材料, 2016, 31(6): 585-593. doi: 10.1016/S1872-5805(16)60034-3
ZHANG Wen-ting, ZHANG Bao-liang, SONG Jin-liang, QI Wei, HE Xiu-jie, LIU Zhan-jun, LIAN Peng-fei, HE Zhou-tong, GAO Li-na, XIA Hui-hao, LIU Xiang-dong, ZHOU Xing-tai, SUN Li-bin, WU Xin-xin. Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors. New Carbon Mater., 2016, 31(6): 585-593. doi: 10.1016/S1872-5805(16)60034-3
Citation: ZHANG Wen-ting, ZHANG Bao-liang, SONG Jin-liang, QI Wei, HE Xiu-jie, LIU Zhan-jun, LIAN Peng-fei, HE Zhou-tong, GAO Li-na, XIA Hui-hao, LIU Xiang-dong, ZHOU Xing-tai, SUN Li-bin, WU Xin-xin. Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors. New Carbon Mater., 2016, 31(6): 585-593. doi: 10.1016/S1872-5805(16)60034-3

熔盐堆用超细颗粒石墨结构和熔盐浸渗研究

doi: 10.1016/S1872-5805(16)60034-3
基金项目: 国家自然科学基金(51602336);上海市自然科学基金(16ZR1443400);国家自然科学基金(51572274,11305240,11075097,11375108);中国科学院战略性先导科技专项“未来先进核裂变能-钍基熔盐堆核能系统”(XDA02004220).
详细信息
    作者简介:

    张文婷,硕士研究生.E-mail:zhangwenting@sinap.ac.cn

    通讯作者:

    宋金亮,副研究员.E-mail:jlsong1982@yeah.net;张宝亮,博士研究生.E-mail:zhangbaoliang@sinap.ac.cn

  • 中图分类号: TB333

Microstructure and molten salt impregnation characteristics of a micro-fine grain graphite for use in molten salt reactors

Funds: National Natural Science Foundation of China (51602336); Natural Science Foundation of Shanghai (16ZR1443400); National Natural Science Foundation of China (51572274, 11305240, 11075097, 11375108); "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA02004220).
  • 摘要: 研究各向同性微细颗粒石墨ZXF-5Q的微结构及熔盐浸渗特性。使用光学显微镜、压汞仪、真密度仪、透射电子显微镜、X射线衍射仪以及拉曼光谱仪,对其气孔、煅烧裂纹、Mrozowski裂纹及晶体结构进行表征。结果表明,ZXF-5Q拥有均匀分布的气孔,非常小的入孔孔径(0.4 μm),数量众多的透镜状Mrozowski裂纹以及良好的晶体结构。熔盐浸渗实验在不同压力(分别为1、3、5个大气压)650℃环境下进行。利用扫描电子显微镜和X射线能谱仪对其浸渗特性进行了观察分析。研究表明,由于其非常小的入口孔径,ZXF-5Q在5个大气压外加压强环境下依然可以很好阻止熔盐浸渗。尽管没有浸渗发生,在ZXF-5Q内部可以发现球形熔盐颗粒,可能是熔盐蒸汽凝结造成的。
  • Nightingale RE. Nuclear Graphite[M]. Academic Press, 1962.
    Burchell TD. Carbon Materials for Advanced Technologies[M]. Pergamon, 1999.
    Virgil'ev YS, Kalyagina IP. Reactor Graphite[M]. Inorg Mater 2003, 39:S46-S58.
    Simmons JHW. Radiation Damage in Graphite[M]. Pergamon Press, 1965.
    Haag G, Reaktortechnik FJIfSu. Properties of ATR-2E Graphite and Property Changes Due to Fast Neutron Irradiation[M]. Forschungszentrum Jülich GmbH, Zentralbibliothek, 2005.
    Telling RH, Heggie MI. Radiation defects in graphite[J]. Philos Mag, 2007, 87(31):4797-4846.
    A technology roadmap for generation IV nuclear energy systems[R]. USDOE, GIF-002-00, 2002.
    Rosenthal MW, Haubenreich PN, Briggs RB. The development status of motten-salt dreeder reactor[R]. ORNL-4812, 1972.
    Briggs RB. Program semi annual progress report[R]. MSRE, ORNL-3708, 1964.
    Ketsten PR. Graphite behavior and its effects on MSBR perform[R]. ORNL-TM-2136, 1969.
    McCoy HE, Weir JR. Materials development for motten salts breeder reactor[R]. ORNL-TM-1854, 1967:46-56.
    Ishiyama S, Burchell TD, Strizak JP, et al. The effect of high fluence neutron irradiation on the properties of a fine-grained isotropic nuclear graphite[J]. J Nucl Mater, 1996, 230(1):1-7.
    Burchell TD, Snead LL. The effect of neutron irradiation damage on the properties of grade NBG-10 graphite[J]. J Nucl Mater, 2007, 371(1-3):18-27.
    Feng SL, Xu L, Li L, et al. Sealing nuclear graphite with pyrolytic carbon[J]. J Nucl Mater, 2013, 441(1-3):449-454.
    He XJ, Song JL, Xu L, et al. Protection of nuclear graphite toward liquid fluoride salt by isotropic pyrolytic carbon coating[J]. J Nucl Mater, 2013, 442(1-3):306-308.
    He XJ, Song JL, Tan J, et al. SiC coating:An alternative for the protection of nuclear graphite from liquid fluoride salt[J]. J Nucl Mater, 2014, 448(1-3):1-3.
    Song JL, Zhao YL, Zhang JP, et al. Preparation of binderless nanopore-isotropic graphite for inhibiting the liquid fluoride salt and Xe135 penetration for molten salt nuclear reactor[J]. Carbon, 2014, 79(0):36-45.
    Zhang BL, Xia HH, He XJ, et al. Characterization of the effects of 3-MeV proton irradiation on fine-grained isotropic nuclear graphite[J]. Carbon, 2014, 77:311-318.
    Bernardet V, Gomes S, Delpeux S, et al. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit[J]. J Nucl Mater, 2009, 384(3):292-302.
    Wen KY, Marrow J, Marsden B. Microcracks in nuclear graphite and highly oriented pyrolytic graphite (HOPG)[J]. J Nucl Mater, 2008, 381(1-2):199-203.
    Kane J, Karthik C, Butt DP, et al. Microstructural characterization and pore structure analysis of nuclear graphite[J]. J Nucl Mater, 2011, 415(2):189-197.
    Mrozowski S. Anisotropy of thermal expansion and internal stresses in polycrystalline graphite and carbons[J]. Physical Review, 1952, 86(4):622.
    Sutton AL, Howard VC. The role of porosity in the accommodation of thermal expansion in graphite[J]. J Nucl Mater, 1962, 7(1):58-71.
    Chi S-H, Kim G-C. Comparison of 3 MeV C(+) ion-irradiation effects between the nuclear graphites made of pitch and petroleum cokes[J]. J Nucl Mater, 2008, 381(1-2):98-105.
    Tuinstra F, Koenig JL. Raman spectrum of graphite[J]. J Chem Phys, 1970, 53(3):1126-1130.
    Nikiel L, Jagodzinski PW. Raman-spectroscopic characterization of graphites-a reevaluation of spectra/structure correlation[J]. Carbon, 1993, 31(8):1313-1317.
    Jawhari T, Roid A, Casado J. Raman-spectroscopic characterization of some commercially available carbon-black materials[J]. Carbon, 1995, 33(11):1561-1565.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, et al. Studying disorder in graphite-based systems by Raman spectroscopy[J]. Physical Chemistry Chemical Physics, 2007, 9(11):1276-1291.
    Knight DS, White WB. Characterization of diamond films by raman-spectroscopy[J]. Journal of Materials Research, 1989, 4(2):385-393.
    Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon[J]. Phys Rev B, 2000, 61(20):14095-14107.
  • 加载中
图(1)
计量
  • 文章访问数:  850
  • HTML全文浏览量:  213
  • PDF下载量:  606
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-10
  • 录用日期:  2016-12-26
  • 修回日期:  2016-11-26
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回