留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭纳米卷的极性微-拉曼光谱研究

G. Carotenuto A. Longo C. Camerlingo S. De Nicola G. P. Pepe

G. Carotenuto, A. Longo, C. Camerlingo, S. De Nicola, G. P. Pepe. 炭纳米卷的极性微-拉曼光谱研究. 新型炭材料, 2016, 31(6): 621-627. doi: 10.1016/S1872-5805(16)60036-7
引用本文: G. Carotenuto, A. Longo, C. Camerlingo, S. De Nicola, G. P. Pepe. 炭纳米卷的极性微-拉曼光谱研究. 新型炭材料, 2016, 31(6): 621-627. doi: 10.1016/S1872-5805(16)60036-7
G. Carotenuto, A. Longo, C. Camerlingo, S. De Nicola, G. P. Pepe. Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy. New Carbon Mater., 2016, 31(6): 621-627. doi: 10.1016/S1872-5805(16)60036-7
Citation: G. Carotenuto, A. Longo, C. Camerlingo, S. De Nicola, G. P. Pepe. Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy. New Carbon Mater., 2016, 31(6): 621-627. doi: 10.1016/S1872-5805(16)60036-7

炭纳米卷的极性微-拉曼光谱研究

doi: 10.1016/S1872-5805(16)60036-7
详细信息
    通讯作者:

    C. Camerlingo, E-mail:carlo.camerlingo@spin.cnr.it

  • 中图分类号: TQ127.1+1

Microstructures of carbon nanoscrolls characterized by polarized micro-Raman spectroscopy

  • 摘要: 采用剪切-摩擦机理,通过卷曲将双轴取向聚丙烯纤维表面转变成石墨纳米片,从而制备出炭纳米卷。通过光学和扫描电镜、透射电镜和红外光谱仪等手段对炭纳米卷的形貌进行分析。微-拉曼测试表征了卷曲结构的形貌变化。从振动的G模式分裂可知,石墨片取向度与卷曲轴有关。
  • Bacon R. Growth, structure, and properties of graphite whiskers[J]. Journal of Applied Physics, 1960, 31(2):283-290.
    Braga S F, Coluci V R, Legoas S B et al. Structure and dynamics of carbon nanoscrolls[J]. Nano Letters, 2004, 4(5):881-884.
    Shi X, Pugno N M, Gao H. Mechanics of carbon nanoscrolls:A review[J]. Acta Mechanica Solida Sinica, 2010, 23(6):484-497.
    Xu Z, Buehler M J. Geometry controls conformation of graphene sheets:Membranes, ribbons, and scrolls[J]. ACS Nano, 2010, 4(5):3869-3876.
    Chuvilin A L, Kuznetsov V L, Obraztsov A N. Chiral carbon nanoscrolls with a polygonal cross-section[J]. Carbon, 2009, 47(13):3099-3105.
    Chivilikhin S A, Popov I Y. Formation and evolution of nanoscroll ensembles based on layered-structure compounds[J]. Doklady Physics, 2009, 54(11):491-493.
    Shi X, Pugno N M, Gao H. Constitutive behavior of pressurized carbon nanoscrolls[J]. International Journal of Fracture, 2011, 171:163-168.
    Xia D, Xue Q, Xie J, et al. Fabrication of carbon nanoscrolls from monolayer graphene[J]. Small, 2010, 6(18):2010-2019.
    Li T S, Lin M F. Quantum transport in carbon nanoscrolls[J]. Physics Letters A, 2012, 376(4):515-520.
    Lacerda L, Bianco A, Prato M, et al. Carbon nanotubes as nanomedicines:From toxicology to pharmacology[J]. Advanced Drug Delivery Reviews, 2006, 58(14):1460-1470.
    Mpourmpakis G, Tylianakis E, Froudakis G E. Carbon nanoscrolls:A promising material for hydrogen storage[J]. Nano Letters, 2007, 7(7):1893-1897.
    Coluci V R, Braga S F, Baughman R H, et al. Prediction of the hydrogen storage capacity of carbon nanoscrolls[J]. Physical Review B, 2007, 75(12):125404.
    Braga S F, Coluci V R, Baughman R H, et al. Hydrogen storage in carbon nanoscrolls:An atomistic molecular dynamics study[J]. Chemical Physics Letters, 2007, 441(1-3):78-82.
    Tapasztó L, Dobrik G, Lambin P, et al. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography[J]. Nature Nanotechnology, 2008, 3(7):397-401.
    Datta S S, Strachan D R, Khamis S M, et al. Crystallographic etching of few-layer graphene[J]. Nano Letters, 2008, 8(7):1912-1915.
    Campos L C, Manfrinato V R, Sanchez-Yamagishi J D, et al. Anisotropic etching and nanoribbon formation in single-layer graphene[J]. Nano Letters, 2009, 9(7):2600-2604.
    Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors[J]. Science, 2008, 319(5867):1229-1232.
    Wu Z S, Ren W, Gao L, et al. Efficient synthesis of graphene nanoribbons sonochemically cut from graphene sheets[J]. Nano Research, 2010, 3(1):16-22.
    Viculis L M, Mack J J, Kaner R B. A chemical route to carbon nanoscrolls[J]. Science, 2003, 299(5611):1361.
    Xie X, Ju L, Feng X, et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene[J]. Nano Letters, 2009, 9(7):2565-2570.
    Zheng J, Liu H, Wu B, et al. Production of high-quality carbon nanoscrolls with microwave spark assistance in liquid nitrogen[J]. Advanced Materials, 2011, 23(21):2460-2463.
    Savoskin M V, Mochalin V N, Yaroshenko A P, et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds[J]. Carbon, 2007, 45(14):2797-2800.
    Kosynkin D V, Higginbotham A L, Sinitskii A, et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458(7240):872876.
    Jiao L, Zhang L, Wang X et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458(7240):87780.
    Zhang Z, Sun Z, Yao J, et al. Transforming carbon nanotube devices into nanoribbon devices[J]. Journal of the American Chemical Society, 2009, 131(37):1346013463.
    Li J L, Peng Q, Bai G Z, et al. Carbon scrolls produced by high Energy ball milling of graphite[J]. Carbon, 2005, 43(13):2830-2833.
    Spreadborough J. The frictional behavior of graphite[J]. Wear, 1962, 5(1):18-30.
    Chen X L, Li Li, Sun X M et al. A novel synthesis of graphene nanoscrolls with tunable dimension at a large scale[J]. Nanotechnology, 2012, 23(5):055603.
    Carotenuto G, Longo A, De Nicola S, et al. A simple mechanical technique to obtain carbon nanoscrolls from graphite nanoplatelets[J]. Nanoscale Research Letters, 2013, 8:403.
    Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes[J]. Advances in Physics, 2000, 49(6):705-814.
    Reich S, Thomsen C. Raman spectroscopy of graphite[J]. Philosophical Transactions of the Royal Society Ser A, 2004, 362(1824):2271-2288.
    Nie H Y, Walzak M J, McIntyre N S. Atomic force microscopy study of biaxially-oriented polypropylene films[J]. Journal of Materials Engineering and Performance, 2004, 13(4):451-460.
    Wang X, Yang D P, Huang G, et al. Rolling up graphene oxide sheets into micro/nanoscrolls by nanoparticle aggregation[J]. Journal of Materials Chemistry, 2012, 22(34):17441-17444.
    Carotenuto G, De Nicola S, Palomba M, et al. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets[J]. Nanotechnology, 2012, 23(48):485705.
    Kim U J, Liu X M, Furtado C A, et al. Infrared-active vibrational modes of single-walled carbon nanotubes[J]. Physical Review Letters, 2005, 95(15):157402.
    Kim U J, Furtado C A, Liu X et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes[J]. Journal of the American Chemical Society, 2005, 127(44):15437-15445.
    Martins Ferreira E H, Moutinho M V O, Stavale F, et al. Evolution of the Raman spectra from single, few, and many-layer graphene with increasing disorder[J]. Physical Review B, 2010, 82(12):125429.
    Roy D, Angeles-Tactay E, Brown R J C, et al. Synthesis and Raman spectroscopic characterization of carbon nanoscrolls[J]. Chemical Physics Letters, 2008, 465(4-6):254-257.
    Zhou H Q, Qiu C Y, Yang H C, et al. Raman spectra and temperature-dependent Raman scattering of carbon nanoscrolls[J]. Chemical Physics Letters, 2011, 501(4-6):475-479.
    Duesberg G S, Loa I, Burghard M, et al. Polarized raman spectroscopy on isolated single-wall carbon nanotubes[J]. Physical Review Letters, 2000, 85(25):5436.
    Nemanich R J, Solin S A. First- and second-order Raman scattering from finite-size crystal of graphite[J]. Physical Review B, 1979, 20(2):392-401.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
    Yoon D, Moon H, Son Y W et al. Strong polarization dependence of double-resonant Raman intensity in graphene[J]. Nano Letters, 2008, 8(12):4270-4274.
    Sahoo S, Palai R, Katiyar S. Polarized Raman scattering in monolayer, bilayer, and suspended bilayer graphene[J]. Journal of Applied Physics, 2011, 110(4):044320.
    Mohiuddin T M G, Lombardo A, Nair R R, et al. Uniaxial strain in graphene by Raman spectroscopy:G peak splitting, Grüneisen parameters, and sample orientation[J]. Physical Review B, 2009, 79(20):205433.
  • 加载中
图(1)
计量
  • 文章访问数:  600
  • HTML全文浏览量:  90
  • PDF下载量:  515
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-16
  • 录用日期:  2016-12-26
  • 修回日期:  2016-10-29
  • 刊出日期:  2016-12-28

目录

    /

    返回文章
    返回