留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同改性Hummers法合成氧化石墨

Roksana Muzyka Monika Kwoka Lukasz Smedowski Noel Díez Grazyna Gryglewi

Roksana Muzyka, Monika Kwoka, Lukasz Smedowski, Noel Díez, Grazyna Gryglewi. 不同改性Hummers法合成氧化石墨. 新型炭材料, 2017, 32(1): 15-20. doi: 10.1016/S1872-5805(17)60102-1
引用本文: Roksana Muzyka, Monika Kwoka, Lukasz Smedowski, Noel Díez, Grazyna Gryglewi. 不同改性Hummers法合成氧化石墨. 新型炭材料, 2017, 32(1): 15-20. doi: 10.1016/S1872-5805(17)60102-1
Roksana Muzyka, Monika Kwoka, Lukasz Smedowski, Noel Díez, Grazyna Gryglewicz. Oxidation of graphite by different modified Hummers methods. New Carbon Mater., 2017, 32(1): 15-20. doi: 10.1016/S1872-5805(17)60102-1
Citation: Roksana Muzyka, Monika Kwoka, Lukasz Smedowski, Noel Díez, Grazyna Gryglewicz. Oxidation of graphite by different modified Hummers methods. New Carbon Mater., 2017, 32(1): 15-20. doi: 10.1016/S1872-5805(17)60102-1

不同改性Hummers法合成氧化石墨

doi: 10.1016/S1872-5805(17)60102-1
详细信息
    通讯作者:

    Roksana Muzyka.E-mail:rmuzyka@ichpw.pl

  • 中图分类号: TQ165

Oxidation of graphite by different modified Hummers methods

  • 摘要: 通过不同的Hummers法和重铬酸钠氧化法,以商业石墨为原料,合成出不同氧含量和官能团的氧化石墨。采用元素分析、FTIR、XPS、SEM和XRD对氧化石墨进行化学和结构表征。重铬酸钾氧化能得到一种氧含量低的氧化石墨,主要形成羟基和环氧基。Hummers法是更有效的一种氧化方法。使用NaNO3氧化2 h,得到的氧化石墨具有最高的氧含量(>40 wt%),形成C-O和C=O键。SEM和XRD结果表明,在这些条件中,Hummers法合成的氧化石墨的石墨层间距最大。因此,用相同的氧化方法,通过改变反应条件能调控氧化石墨的化学结构。
  • Brodie B C. Sur le poids atomique du graphite[J]. Annales des Chimie et des Physique, 1860, 59: 466-472.
    Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(3934): 1530-1534.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39: 228-240.
    Hofmann U, Holst R. Uber die surenatur und die methylierung von graphitoxyd[J]. Chemischen Gesellschaft B, 1939, 72: 754-771.
    Ruess G. Uber das Graphitoxyhydroxyd (Graphitoxyd)[J]. monatshefte fur chemie, 1946, 76(3-5): 381-417.
    He H, Klinowski J, Forster M, et al. A new structural model for graphite oxide[J]. Chemical Physics Letters, 1998, 287(1-2): 53-56.
    Botas C, Álvarez P, Blanco C, et al. The effect of the parent graphite on the structure of graphene oxide[J]. Carbon, 2012, 50(1): 275-282.
    Botas C, Álvarez P, Blanco C, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods[J]. Carbon, 2013, 65: 156-164.
    Chandra S, Sahu S, Pramanik P. A novel synthesis of graphene by dichromate oxidation[J]. Materials Science and Engineering B, 2010, 167(3): 133-136.
    Chua C K, Sofer Z, Pumera M. Graphite oxides: Effects of permanganate and chlorate oxidants on the oxygen composition[J]. Chemistry-A European Journal, 2012, 18(42): 13453-13459.
    Rodriguez-Pastor I, Ramos-Fernandez G, Varela-Rizo H, et al. Towards the understanding of the graphene oxide structure: How to control the formation of humic-and fulvic-like oxidized debris[J]. Carbon, 2015, 84: 299-309.
    Moo J G S, Khezri B, Webster R D, et al. Graphene oxides prepared by Hummers, Hofmann's, and Staudenmaier's methods: Dramatic influences on heavy-metal-ion adsorption[J]. ChemPhysChem, 2014, 15(14): 2922-2929.
    Seredych M, Tamashausky A V, Bandosz T J. Graphite oxides obtained from porous graphite: the role of surface chemistry and texture in ammonia retention at ambient conditions[J]. Advanced Functional Materials, 2010, 20(10): 1670-1679.
    Poh H L, Sanek F, Ambrosi A, et al. Graphenes prepared by Staudenmaier, Hofmann and Hummers methods with consequent thermal exfoliation exhibit very different electrochemical properties[J]. Nanoscale, 2012, 4: 3515-3522.
    Hummers W S. US Patent No 2798878[P]. United States Patent Office, 1954.
    Nekahi A, Marashi P H, Haghshenas D. Transparent conductive thin film of ultra large reduced graphene oxide monolayers[J]. Applied Surface Science, 2014, 295: 59-65.
    Drewniak S, Pustelny T, Muzyka R, et al. Investigations of selected physical properties of graphite oxide and thermally exfoliated/reduced graphene oxide in the aspect of their applications in photonic gas sensors[J]. Photonics Letters of Poland, 2015, 7(2): 47-49.
    Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Jeong H K, Colakerol L, Jin M H, et al. Unoccupied electronic states in graphite oxides[J]. Chemical Physical Letters, 2008, 460(4-6): 499-502.
    Fan X, Yu Ch, Yang J, et al. Hydrothermal synthesis and activation of graphene-incorporated nitrogen-rich carbon composite for high-performance supercapacitors[J]. Carbon, 2014, 70: 130-141.
    Acik M, Lee G, Mattevi C, et al. The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy[J]. The Journal of Physical Chemisty C, 2011, 115(40): 19761-19781.
  • 加载中
图(1)
计量
  • 文章访问数:  847
  • HTML全文浏览量:  183
  • PDF下载量:  1205
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 录用日期:  2017-02-25
  • 修回日期:  2017-01-08
  • 刊出日期:  2017-02-28

目录

    /

    返回文章
    返回