留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多壁碳纳米管制备有机光伏电池

Samrat Paul Bijumani Rajbongshi Birinchi Bora Ranjith G Nair S K Samdarshi

Samrat Paul, Bijumani Rajbongshi, Birinchi Bora, Ranjith G Nair, S K Samdarshi. 多壁碳纳米管制备有机光伏电池. 新型炭材料, 2017, 32(1): 27-34. doi: 10.1016/S1872-5805(17)60104-5
引用本文: Samrat Paul, Bijumani Rajbongshi, Birinchi Bora, Ranjith G Nair, S K Samdarshi. 多壁碳纳米管制备有机光伏电池. 新型炭材料, 2017, 32(1): 27-34. doi: 10.1016/S1872-5805(17)60104-5
Samrat Paul, Bijumani Rajbongshi, Birinchi Bora, Ranjith G Nair, S K Samdarshi. Organic photovoltaic cells using MWCNTs. New Carbon Mater., 2017, 32(1): 27-34. doi: 10.1016/S1872-5805(17)60104-5
Citation: Samrat Paul, Bijumani Rajbongshi, Birinchi Bora, Ranjith G Nair, S K Samdarshi. Organic photovoltaic cells using MWCNTs. New Carbon Mater., 2017, 32(1): 27-34. doi: 10.1016/S1872-5805(17)60104-5

多壁碳纳米管制备有机光伏电池

doi: 10.1016/S1872-5805(17)60104-5
详细信息
    通讯作者:

    S K Samdarshi.E-mail:drsksamdarshi@rediffmail.com

  • 中图分类号: TQ127.1+1

Organic photovoltaic cells using MWCNTs

  • 摘要: 以芝麻油为原料,采用化学气相沉积法合成出多壁碳纳米管(MWCNTs),经功能化改性、切短后用作有机光伏太阳能电池的添加剂。该有机光伏电池以聚3-辛基噻吩为光敏分子,PCBM为激子离化剂。结果表明,添加MWCNTs与功能化且切短的fc-MWCNTs,有机光伏电池的功率转换效率能分别提高22%和40%。由于较高的空穴迁移率,激子离化后,P3OT产生空穴的收集和运输得到提高。功能化和切短的fc-MWCNTs增加了其在P3OT,PCBM中的分散性,进而提高功率转换效率。
  • Ago H, Petritsch K, Shaffer M S P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices[J]. Adv Mater, 1999, 11: 1281.
    Brabec C J, Cravino A,Meissner D,et al. Origin of the open circuit voltage of plastic solar cells[J]. Adv Funct Mater, 2001, 11(5): 374-380.
    Kymakis E, Amaratunga G A J. Single-wall carbon nanotube/conjugated polymer photovoltaic devices[J]. Appl Phys Lett, 2002, 80: 112.
    Shaheen S E, Radspinner R, Peyghambarian N, et al. Fabrication of bulk heterojunction plastic solar cells by screen printing[J]. Appl Phys Lett, 2001, 78: 841.
    Reyes-Reyes M, López-Sandoval R, Liu J, et al. Bulk heterojunction organic photovoltaic based on polythiophene-polyelectrolyte carbon nanotube composites[J]. Sol Energy Mat & Solar Cell, 2007, 91:1478.
    Liu Z, He D, Wang Y, et al. Improving photovoltaic properties by incorporating both SPF graphene and functionalized multiwalled carbon nanotubes[J]. Solar Energy Materials and Solar Cells, 2010, 94(12): 2148-2153.
    Guldi D M, Rahman G M, Zerbetto F, et al. Carbon nanotubes in electron donor-acceptor nanocomposites[J]. Acc Chem Res, 2005, 38: 871-878.
    Patyk R L, Lomba B S, Nogueira A F, et al. Carbon nanotube-polybithiophene photovoltaic devices with high open-circuit voltage[J]. Physics status solidi, 2007, 1: R43-R45.
    Kalita G, Adhikari S, Aryal H R,et al. Cutting of carbon nanotubes for solar cell application[J]. Appl Phys Lett, 2008, 92: 123508.
    Rajiv K Singha, Jitendra Kumarb, Amit Kumara, et al. Poly(3-hexylthiophene): Functionalized single-walled carbon nanotubes: (6,6)-phenyl-C61-butyric acid methyl ester composites for photovoltaic cell at ambient condition[J]. Solar Energy Materials & Solar Cells, 2010, 94: 2386-2394.
    Kalita G, et al. Fullerene(C60) decoration in oxygen plasma treated multiwalled carbon nanotubes for photovoltaic application[J]. App Phy Lett, 2008, 92: 063508.
    Kanai Y. Atomistic oxidation mechanism of a carbon nanotube in nitric acid[J]. Physical Review Letters, 2010, 104: 066401.
    Paul S, Samdarshi S K. A green precursor for carbon nanotube synthesis[J]. New Carbon Materials, 2011, 26(2): 85-88.
    Kumar J. Self-assembly of SWCNT in P3HT matrix, Diamond Relat[J]. Mater, 2007, 16: 446-453.
    Hung L S, Tang C W. Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode[J]. Appl Phys Lett, 1997, 70(2): 152-154.
    http://rredc.nrel.gov/solar/spectra/am1.5/, Reference Solar Spectral Irradiance: Air Mass 1.5 NREL retrieved on 1 May 2011.
    Emmenegger C, et al. Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism[J]. Carbon, 2003, 41: 539-547.
    Ermakova M A, Ermakov D Y, Chuvilin A L, et al. Decomposition of methane over iron catalysts at the range of moderate temperatures: The influence of structure of the catalytic systems and the reaction conditions on the yield of carbon and morphology of carbon filaments[J]. Jr of Cat, 2001, 201: 183-197.
  • 加载中
图(1)
计量
  • 文章访问数:  459
  • HTML全文浏览量:  104
  • PDF下载量:  419
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-23
  • 录用日期:  2017-02-25
  • 修回日期:  2017-01-06
  • 刊出日期:  2017-02-28

目录

    /

    返回文章
    返回