留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Silicalite-1/ACF制备及对NO催化氧化NO2的催化活性

李裕 李军平 薛泽慧

李裕, 李军平, 薛泽慧. Silicalite-1/ACF制备及对NO催化氧化NO2的催化活性. 新型炭材料, 2017, 32(1): 35-40. doi: 10.1016/S1872-5805(17)60105-7
引用本文: 李裕, 李军平, 薛泽慧. Silicalite-1/ACF制备及对NO催化氧化NO2的催化活性. 新型炭材料, 2017, 32(1): 35-40. doi: 10.1016/S1872-5805(17)60105-7
LI Yu, LI Jun-ping, XUE Ze-hui. Preparation of a silicalite/ACF composite and its catalytic activity for NO oxidation to NO2. New Carbon Mater., 2017, 32(1): 35-40. doi: 10.1016/S1872-5805(17)60105-7
Citation: LI Yu, LI Jun-ping, XUE Ze-hui. Preparation of a silicalite/ACF composite and its catalytic activity for NO oxidation to NO2. New Carbon Mater., 2017, 32(1): 35-40. doi: 10.1016/S1872-5805(17)60105-7

Silicalite-1/ACF制备及对NO催化氧化NO2的催化活性

doi: 10.1016/S1872-5805(17)60105-7
基金项目: 山西省科技重大专项(20111101013).
详细信息
    通讯作者:

    李裕.E-mail:hgliyu@nuc.edu.cn

  • 中图分类号: TQ342+.74

Preparation of a silicalite/ACF composite and its catalytic activity for NO oxidation to NO2

Funds: Major Program of Science and Technology of Shanxi Province (20111101013).
  • 摘要: 采用晶种浸渍和二次水热法制备了Silicalite-1/ACF复合催化材料,采用扫描电子显微镜(SEM)、X射线衍射(XRD)和N2吸附和脱附等手段进行样品表征。结果表明,炭纤维表面清晰可见Silicalite-1包覆层,Silicalite-1/ACF复合材料的BET比表面积为826 m2·g-1,孔体积为0.42 cm3·g-1,平均孔径约为0.64 nm。在室温下研究了Silicalite-1/ACF复合催化材料对NO催化氧化NO2的催化活性,相对湿度高于25%时,NO催化转化率超过38%,Silicalite-1/ACF复合催化材料具有良好的抗水汽性能和催化活性,主要是由于包覆的Silicalite-1具有良好的疏水性能。
  • Skalska K, Miller J S, Ledakowicz S. Trends in NOx abatement: a review[J]. Science of the Total Environment, 2010, 408(19): 3376-3989.
    Abián M, Peribáñez E, Millera Á et al. Impact of nitrogen oxides (NO, NO2, N2O) on the formation of soot[J]. Combustion and Flame, 2014, 161(1): 280-287.
    Yong B J, Jin S C, Ko J H, et al. NH3 selective catalytic reduction (SCR) of nitrogen oxides (NOx) over activated sewage sludge char[J]. Korean Journal of Chemical Engineering, 2011, 28(1): 106-113.
    Wang J, Yan Z, Liu L, et al. Low-temperature SCR of NO with NH3 over activated semi-coke composite-supported rare earth oxides[J]. Applied Surface Science, 2014, 309(4): 1-10.
    Kankani V G, Chatterjee I B, Joshi J B, et al. Process intensification in manufacture of nitric acid: NOx absorption using enriched and pure oxygen[J]. Chemical Engineering Journal, 2015, 278: 430-446.
    Skalska K, Miller J S, Ledakowicz S. Intensification of NOx absorption process by means of ozone injection into exhaust gas stream[J]. Chemical Engineering and Processing: Process Intensification, 2012, 61(4): 69-74.
    Li Y, Liu Y Z, Zhang L Y, et al. Experimental study on absorption of NOx into nitric acid solution in rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2010, 18(2): 244-248.
    Liémans I, Thomas D. Simultaneous NOx and SOx reduction from oxyfuel exhaust gases using acidic solutions containing hydrogen peroxide[J]. Energy Procedia, 2013, 37: 1348-1356.
    Raj D B, Seop J D, Hyun L S, et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor[J]. Journal of Hazardous Materials, 2008, 150(3): 649-655.
    Ding J, Zhong Q, Zhang S, et al. Size- and shape-controlled synthesis and catalytic performance of iron-aluminum mixed oxide nanoparticles for NOx and SO2 removal with hydrogen peroxide[J]. Journal of Hazardous Materials, 2015, 283(11): 633-642.
    Paiva J L D, Kachan G C. Modeling and simulation of a packed column for NOx absorption with hydrogen peroxide[J]. Industrial & Engineering Chemistry Research, 1998, 37(2): 609-614.
    Thomas D, Vanderschuren J. Modeling of NOx absorption into nitric acid solutions containing hydrogen peroxide[J]. Industrial & Engineering Chemistry Research, 1997, 36(8): 3315-3322.
    Neathery J K, Rubel AM, Stencel J M. Uptake of NOx by activated carbons: bench-scale and pilot-plant testing[J]. Carbon, 1997, 35(9): 1321-1327.
    Yang J, Mestl G, Herein D, et al. Reaction of NO with carbonaceous materials 1. Reaction and adsorption of NO on ashless carbon black[J]. Carbon, 2000, 38(5): 715-727.
    Claudino A, Soares J L, Moreira R F P M, et al. Adsorption equilibrium and breakthrough analysis for NO adsorption on activated carbons at low temperatures[J]. Carbon, 2004, 42(8-9): 1483-1491.
    Guo Z C, Xie Y S, Hong I, at al. Catalytic oxidation of NO to NO2 on activated carbon[J]. Energy Conversion and Management, 2001, 42(15-17): 2005-2018.
    Mochida I, Shirahama N, Kawano S, et al. NO oxidation over activated carbon fiber (ACF). Part 1. Extended kinetics over a pitch based ACF of very large surface area[J]. Fuel, 2000, 79(14): 1713- 1723.
    Adapa S, Gaur V, Verma N. Catalytic oxidation of NO by activated carbon fiber (ACF)[J]. Chemical Engineering Journal, 2006, 116(1): 25-37.
    Zhang W J, Rabiei S, Bagreev A, et al. Study of NO adsorption on activated carbons[J]. Applied Catalysis B: Environmental, 2008, 83(1-2): 63-71.
    Mochida I, Kawabuchi Y, Kawano S, et al. High catalytic activity of pitch-based activated carbon fibres of moderate surface area for oxidation of NO to NO2 at room temperature[J]. Fuel, 1997, 76(6): 543-548.
    Liu H, Zhang Z, Yuanyuan X, et al. Adsorption-oxidation reaction mechanism of NO on Na-ZSM-5 molecular sieves with a high Si/Al ratio at ambient temperature[J]. Chinese Journal of Catalysis, 2010, 31(9): 1233-1241.
    Zhang Z Q, Atkinson J D, Jiang B, et al. NO oxidation by microporous zeolites: Isolating the impact of pore structure to predict NO conversion[J]. Applied Catalysis B: Environmental, 2015,163: 573-583.
    Bacher V, Perbandt C, Schwefer M, et al. Kinetics of the NO/NO2 equilibrium reaction over an iron zeolite catalyst[J]. Applied Catalysis B: Environmental, 2013, 134-135(17): 55-59.
    Li J, Wu E. Adsorption of hydrogen on porous materials of activated carbon and zeolite NaX crossover critical temperature[J]. Journal of Supercritical Fluids, 2009, 49(2): 196-202.
    Foo KY, Hameed B H. The environmental applications of activated carbon/zeolite composite materials[J]. Advances in Colloid and Interface Science, 2011, 162(1-2): 22-28.
    Tin P S, Chung T S, Jiang L Y. Carbon-zeolite composite membranes for gas separation[J]. Carbon, 2005, 43(9): 2025-2027.
    Abildstrøm J O, Kegnæs M, Hytoft G et al. Synthesis of mesoporous zeolite catalysts by in situ formation of carbon template over nickel nanoparticles[J]. Microporous and Mesoporous Materials, 2016, 225: 232-237.
  • 加载中
图(1)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  93
  • PDF下载量:  469
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 录用日期:  2017-02-25
  • 修回日期:  2016-01-03
  • 刊出日期:  2017-02-28

目录

    /

    返回文章
    返回