留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能

韩潇 肇研 孙健明 李烨 张金栋 郝月

韩潇, 肇研, 孙健明, 李烨, 张金栋, 郝月. 氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能. 新型炭材料, 2017, 32(1): 48-55. doi: 10.1016/S1872-5805(17)60107-0
引用本文: 韩潇, 肇研, 孙健明, 李烨, 张金栋, 郝月. 氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能. 新型炭材料, 2017, 32(1): 48-55. doi: 10.1016/S1872-5805(17)60107-0
HAN Xiao, ZHAO Yan, SUN Jian-ming, LI Ye, ZHANG Jin-dong, HAO Yue. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites. New Carbon Mater., 2017, 32(1): 48-55. doi: 10.1016/S1872-5805(17)60107-0
Citation: HAN Xiao, ZHAO Yan, SUN Jian-ming, LI Ye, ZHANG Jin-dong, HAO Yue. Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites. New Carbon Mater., 2017, 32(1): 48-55. doi: 10.1016/S1872-5805(17)60107-0

氧化石墨烯/炭纤维/环氧树脂基复合材料的制备及其层间剪切性能

doi: 10.1016/S1872-5805(17)60107-0
详细信息
    作者简介:

    韩潇,博士研究生.E-mail:hanxiao9107@163.com

    通讯作者:

    肇研,博士,教授.E-mail:jennyzhaoyan@buaa.edu.cn

  • 中图分类号: TB332

Effect of graphene oxide addition on the interlaminar shear property of carbon fiber-reinforced epoxy composites

  • 摘要: 利用预浸料技术热压工艺,制备了氧化石墨烯改性的炭纤维环氧树脂基复合材料。为获得更好的分散效果及加工性能,选用四氢呋喃作为溶剂来分散氧化石墨烯。结果显示:含有氧化石墨烯的混合胶液体系可稳定3 h左右,满足预浸料制备工艺要求;制得的复合材料单向层板层间剪切强度(ILSS)有较大提高,当氧化石墨烯含量为0.10%时,其达到96.14 MPa,与空白样板相比提高了约8.05%,玻璃化转变温度升高近5℃。断面形貌分析表明,上述显著提高可能是由于氧化石墨烯的加入使得环氧树脂增韧以及炭纤维复合材料的界面得到较大的改善所致。
  • Sun P, Zhao Y, Luo Y, et al. Effect of temperature and cyclic hygrothermal aging on the interlaminar shear strength of carbon fiber/bismaleimide (BMI) composite[J]. Materials and Design, 2011, 32(8): 4341-4347.
    Zhu J, Imam A, Crane R, et al. Processing a glass fiber reinforced vinyl ester composite with nanotube enhancement of interlaminar shear strength[J]. Composites Science and Technology, 2007, 67(7): 1509-1517.
    Sha J J, Dai J X, Li J, et al. Influence of carbon fiber's surface state on interlaminar shear properties of CFRP laminate[J]. Composite Interfaces, 2013, 20(8): 543-552.
    Rahman M M, Zainuddin S, Hosur M V, et al. Effect of NH2-MWCNTs on crosslink density of epoxy matrix and ILSS properties of E-glass/epoxy composites[J]. Composite Structures, 2012, 95: 213-221.
    Asi O. Mechanical properties of glass-fiber reinforced epoxy composites filled with Al2O3 particles[J]. Journal of Reinforced Plastics and Composites, 2009, 28(23): 2861-2867.
    Yang Y, Lu C X, Su X L, et al. Effect of nano-SiO2 modified emulsion sizing on the interfacial adhesion of carbon fibers reinforced composites[J]. Materials Letters, 2007, 61(17): 3601-3604.
    Dorigato A, Pegoretti A, Quaresimin M. Thermo-mechanical characterization of epoxy/clay nanocomposites as matrices for carbon/nanoclay/epoxy laminates[J]. Materials Science and Engineering A, 2011, 528(19): 6324-6333.
    Ye Y, Chen H, Wu J, et al. Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix[J]. Composites Science and Technology, 2011, 71(5): 717-723.
    Davis D C, Wilkerson J W, Zhu J, et al. Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology[J]. Composite Structures, 2010, 92(11): 2653-2662.
    Fan Z, Santare M H, Advani S G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(3): 540-554.
    Chen Q, Wu W, Zhao Y, et al. Nano-epoxy resins containing electrospun carbon nanofibers and the resulting hybrid multi-scale composites[J]. Composites Part B: Engineering, 2014, 58: 43-53.
    Zhou Y, Pervin F, Jeelani S, et al. Improvement in mechanical properties of carbon fabric-epoxy composite using carbon nanofibers[J]. Journal of Materials Processing Technology, 2008, 198(1): 445-453.
    Tsantzalis S, Karapappas P, Vavouliotis A, et al. Enhancement of the mechanical performance of an epoxy resin and fiber reinforced epoxy resin composites by the introduction of CNF and PZT particles at the microscale[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38(4): 1076-1081.
    Jiang Z, Zhang H, Zhang Z, et al. Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(11): 1762-1767.
    Cho J, Chen J Y, Daniel I M. Mechanical enhancement of carbon fiber/epoxy composites by graphite nanoplatelet reinforcement[J]. Scripta Materialia, 2007, 56(8): 685-688.
    Cho J, Daniel I M. Reinforcement of carbon/epoxy composites with multi-wall carbon nanotubes and dispersion enhancing block copolymers[J]. Scripta Materialia, 2008, 58(7): 533-536.
    Geim A K. Graphene: status and prospects[J]. Science, 2009, 324(5934): 1530-1534.
    Bunch J S, Verbridge S S, Alden J S, et al. Impermeable atomic membranes from graphene sheets[J]. Nano Letters, 2008, 8(8): 2458-2462.
    Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907.
    Ramanathan T, Abdala A A, Stankovich S, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology, 2008, 3(6): 327-331.
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388.
    Wang S, Tambraparni M, Qiu J, et al. Thermal expansion of graphene composites[J]. Macromolecules, 2009, 42(14): 5251-5255.
    Rafiee M A, Rafiee J, Wang Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12): 3884-3890.
    Cano M, Khan U, Sainsbury T, et al. Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains[J]. Carbon, 2013, 52: 363-371.
    Fang M, Wang K, Lu H, et al. Single-layer graphene nanosheets with controlled grafting of polymer chains[J]. Journal of Materials Chemistry, 2010, 20(10): 1982-1992.
    Kim H, Miura Y, Macosko C W. Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity[J]. Chemistry of Materials, 2010, 22(11): 3441-3450.
    Steurer P, Wissert R, Thomann R, et al. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide[J]. Macromolecular Rapid Communications, 2009, 30(4-5): 316-327.
    Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339-1339.
    Wang Y, Zhao Y, Bao T, et al. Preparation of Ni-reduced graphene oxide nanocomposites by Pd-activated electroless deposition and their magnetic properties[J]. Applied Surface Science, 2012, 258(22): 8603-8608.
    Chen W, Yan L, Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4): 1146-1152.
    Enoki T, Takai K. Unconventional electronic and magnetic functions of nanographene-based host-guest systems[J]. Dalton Transactions, 2008(29): 3773-3781.
    Cai W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide[J]. Science, 2008, 321(5897): 1815-1817.
    Wang S, Chia P J, Chua L L, et al. Band-like transport in surface-functionalized highly solution-processable graphene nanosheets[J]. Advanced Materials, 2008, 20(18): 3440-3446.
    Zhang X, Fan X, Yan C, et al. Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide[J]. ACS Applied Materials & Interfaces, 2012, 4(3): 1543-1552.
    Guo H L, Wang X F, Qian Q Y, et al. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009, 3(9): 2653-2659.
    Park S, An J, Jung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J]. Nano Letters, 2009, 9(4): 1593-1597.
    Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565.
    Shen X J, Liu Y, Xiao H M, et al. The reinforcing effect of graphene nanosheets on the cryogenic mechanical properties of epoxy resins[J]. Composites Science and Technology, 2012, 72(13): 1581-1587.
    Khan S U, Kim J K. Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers[J]. Carbon, 2012, 50(14): 5265-5277.
    Zaman I, Phan T T, Kuan H C, et al. Epoxy/graphene platelets nanocomposites with two levels of interface strength[J]. Polymer, 2011, 52(7): 1603-1611.
    Park S, Lee K S, Bozoklu G, et al. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking[J]. ACS Nano, 2008, 2(3): 572-578.
    Hussain M, Nakahira A, Niihara K. Mechanical property improvement of carbon fiber reinforced epoxy composites by Al2O3 filler dispersion[J]. Materials Letters, 1996, 26(3): 185-191.
    Yang J P, Yang G, Xu G, et al. Cryogenic mechanical behaviors of MMT/epoxy nanocomposites[J]. Composites Science and Technology, 2007, 67(14): 2934-2940.
    Salavagione H J, Martínez G, Ellis G. Recent advances in the covalent modification of graphene with polymers[J]. Macromolecular Rapid Communications, 2011, 32(22): 1771-1789.
    Fang M, Zhang Z, Li J, et al. Constructing hierarchically structured interphases for strong and tough epoxy nanocomposites by amine-rich graphene surfaces[J]. Journal of Materials Chemistry, 2010, 20(43): 9635-9643.
    Ribeiro H, Silva W M, Rodrigues M T F, et al. Glass transition improvement in epoxy/graphene composites[J]. Journal of Materials Science, 2013, 48(22): 7883-7892.
    Chua P S. Dynamic mechanical analysis studies of the interphase[J]. Polymer Composites, 1987, 8(5): 308-313.
    Deng S, Ye L. Influence of fiber-matrix adhesion on mechanical properties of graphite/epoxy composites: III. Impact and dynamic mechanical properties[J]. Journal of Reinforced Plastics and Composites, 2000, 19(9): 689-703.
  • 加载中
图(1)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  112
  • PDF下载量:  620
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-10
  • 录用日期:  2017-02-25
  • 修回日期:  2016-12-30
  • 刊出日期:  2017-02-28

目录

    /

    返回文章
    返回