留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于神经网络的炭气凝胶孔结构的预测与优化模型研究

杨榛 乔文明 梁晓怿

杨榛, 乔文明, 梁晓怿. 基于神经网络的炭气凝胶孔结构的预测与优化模型研究. 新型炭材料, 2017, 32(1): 77-85. doi: 10.1016/S1872-5805(17)60108-2
引用本文: 杨榛, 乔文明, 梁晓怿. 基于神经网络的炭气凝胶孔结构的预测与优化模型研究. 新型炭材料, 2017, 32(1): 77-85. doi: 10.1016/S1872-5805(17)60108-2
YANG Zhen, QIAO Wen-ming, LIANG Xiao-yi. Modelling and optimization of the pore structure of carbon aerogels using an artificial neural network. New Carbon Mater., 2017, 32(1): 77-85. doi: 10.1016/S1872-5805(17)60108-2
Citation: YANG Zhen, QIAO Wen-ming, LIANG Xiao-yi. Modelling and optimization of the pore structure of carbon aerogels using an artificial neural network. New Carbon Mater., 2017, 32(1): 77-85. doi: 10.1016/S1872-5805(17)60108-2

基于神经网络的炭气凝胶孔结构的预测与优化模型研究

doi: 10.1016/S1872-5805(17)60108-2
基金项目: 国家自然科学基金(21177038).
详细信息
    通讯作者:

    梁晓怿.E-mail:xyliang73@sina.com

  • 中图分类号: TQ127.1+1

Modelling and optimization of the pore structure of carbon aerogels using an artificial neural network

Funds: National Natural Science Foundation of China (51174144); Key Scientific and Technological Projects in Shanxi Province (20110321039).
  • 摘要: 如何控制和预测孔结构是炭气凝胶研究的重要课题。然而,由于耗时耗财,导致实验方法研究控制和预测孔结构成为难题。本文提出一种基于神经网络的炭气凝胶孔结构的预测与优化模型,并采用遗传算法设计和优化模型,对六种典型训练算法模型性能进行比较分析。利用该模型对孔径和吸附容量进行预测,两者的预测相关系数分别为0.992和0.981,预测均方根误差分别为0.077和0.054。经测试,该模型与实验研究的结果相符,并有效的应用于预测和控制炭气凝胶实验参数。
  • Pekala R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. J Mater Sci, 1989, 24: 3221-3227.
    Pekala R W, Alviso C T, Kong F M. Aerogels derived from multifunctional organic monomers[J]. J Non-Cryst Solids, 1992, 145: 90-98.
    Liu X M, Zhang R, Zhan L, et al. Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte[J]. New Carbon Mater, 2007, 22: 153-158.
    Saliger R, Fischer U, Herta C. High surface area carbon aerogels for supercapacitors[J]. J Non-Cryst Solids, 1998, 2259: 335-342.
    Moreno C C, Maldonado H F J. Carbon aerogels for catalysis applications: An overview[J]. Carbon, 2005, 43: 455-465.
    Ying T Y, Yang K L, Yiacoumi S. Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel[J]. J Colloid Interf Sci, 2002, 250: 18-27.
    Timung S, Mandal T K. Prediction of flow pattern of gas-liquid flow through circular microchannel using probabilistic neural network[J]. Appl Soft Comput, 2013, 13:1674-1685.
    Eynard J, Grieu S, Polit M. Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption[J]. Eng Appl Artif Intel, 2011, 24: 501-516.
    Kiranyaz S, Ince T, Yildirim A, et al. Evolutionary artificial neural networks by multi-dimensional particle swarm optimization[J]. Neural Networks, 2009, 22: 1448-1462.
    Kuzmanovski I, Novi M, Trpkovska M. Automatic adjustment of the relative importance of different input variables for optimization of counter-propagation artificial neural networks[J]. Analytica Chem Acta, 2009, 642: 142-147.
    Wang S C, Cong D X, Sun R J. Predicting saturates of sour vacuum gas oil using artificial neural networks and genetic algorithms[J]. Expert Syst Appl, 2010, 37: 4768-4771.
    Plumb A P, Rowe R C, York P, et al. Optimisation of the predictive ability of artificial neural network (ANN) models: A comparison of three ANN programs and four classes of training algorithms[J]. Eur J Pharm Sci, 2005, 25: 395-405.
    Long D H, Zhang J, Yang J H, et al. Preparation and microstructure control of carbon aerogels produced using m-cresol mediated sol-gel polymerization of phenol and furfural[J].New Carbon Mater, 2008, 23: 165-170.
    Papadopoulos V D, Beligiannis G N, Hela D G. Combining experimental design and artificial neural networks for the determination of chlorinated compounds in fish using matrix solid-phase dispersion[J]. Appl Soft Comput, 2011, 11: 5155-5164.
    McCulloch W, Pitt W. A logical calculus of the ideas immanent[J]. Math Biophys, 1943, 5: 115-133.
    Khanmohammadi M, Garmarudi A B, Khoddami N, et al. A novel technique based on diffuse reflectance near-infrared spectrometry and back-propagation artificial neural network for estimation of particle size in TiO2 nano particle samples[J]. J Microchemical, 2010, 95: 337-340.
    Hanafizadeh P, Zavasan R A, Khaki H R. An expert system for perfume selection using artificial neural network[J]. Expert Syst Appl, 2010, 37: 8879-8887.
    Perlovsky L. Neural Networks and Intellection[M]. Oxford University Press, 2001.
    James T L, Barkhi R, Johnson J D. Platform impact on performance of parallel genetic algorithms: Design and implementation considerations[J]. Eng Appl Artif Intel, 2006, 19: 843-856.
    Davis L, Reinhold V N. Handbook of Genetic Algorithms[M]. New York, 1991.
  • 加载中
图(1)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  114
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-28
  • 录用日期:  2017-02-25
  • 修回日期:  2017-01-29
  • 刊出日期:  2017-02-28

目录

    /

    返回文章
    返回