留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

WAXS/SAXS,SAXS二维全谱拟合研究PAN基炭纤维预氧化、炭化过程中微观结构演变

李小芸 田丰 高学平 边风刚 李秀宏 王劼

李小芸, 田丰, 高学平, 边风刚, 李秀宏, 王劼. WAXS/SAXS,SAXS二维全谱拟合研究PAN基炭纤维预氧化、炭化过程中微观结构演变. 新型炭材料, 2017, 32(2): 130-137. doi: 10.1016/S1872-5805(17)60110-0
引用本文: 李小芸, 田丰, 高学平, 边风刚, 李秀宏, 王劼. WAXS/SAXS,SAXS二维全谱拟合研究PAN基炭纤维预氧化、炭化过程中微观结构演变. 新型炭材料, 2017, 32(2): 130-137. doi: 10.1016/S1872-5805(17)60110-0
LI Xiao-yun, TIAN Feng, GAO Xue-ping, BIAN Feng-gang, LI Xiu-hong, WANG Jie. WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process. New Carbon Mater., 2017, 32(2): 130-137. doi: 10.1016/S1872-5805(17)60110-0
Citation: LI Xiao-yun, TIAN Feng, GAO Xue-ping, BIAN Feng-gang, LI Xiu-hong, WANG Jie. WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process. New Carbon Mater., 2017, 32(2): 130-137. doi: 10.1016/S1872-5805(17)60110-0

WAXS/SAXS,SAXS二维全谱拟合研究PAN基炭纤维预氧化、炭化过程中微观结构演变

doi: 10.1016/S1872-5805(17)60110-0
基金项目: 东华大学纤维材料改性国家重点实验室开放课题(LK1506);国家自然科学青年基金(11305249);973项目(2011CB606104,2011CB605604).
详细信息
    作者简介:

    李小芸,助理研究员.E-mail:lixiaoyun@sinap.ac.cn

    通讯作者:

    李秀宏.E-mail:lixiuhong@sinap.ac.cn;王劼.E-mail:wangjie@sinap.ac.cn

  • 中图分类号: TQ342+.74

WAXD/SAXS study and 2D fitting (SAXS) of the microstructural evolution of PAN-based carbon fibers during the pre-oxidation and carbonization process

Funds: State Key Laboratory for Modification of Chemical Fibers and Polymer Materials in Donghua University (LK1506); National Natural Science Foundation of China (11305249); National Basic Research Program of China (2011CB606104, 2011CB605604).
  • 摘要: 利用广角(WAXD)和小角散射(SAXS)的方法,对PAN基炭纤维制备过程不同阶段纤维的微晶和微孔进行研究。WAXD结果表明,在炭化过程中,微晶尺寸变大,并沿着纤维轴方向取向。SAXS结果表明,制备过程过,新微孔进一步形成,微孔逐渐沿纤维轴排列,微孔的平均长度增大。基于传统分析方法,确立微孔为具有择优取向的圆柱状,其尺寸大小成log正态函数分布的散射模型,对二维散射图进行全谱拟合分析。将此方法运用于炭纤维,得出该模型可以准确描述微孔的相关特征。
  • Anthony D C, Dan D E. Flow behavior of mesophase pitch[J]. Carbon, 2003, 41(7): 1411-1417.
    Yang M C, Yu D G. Influence of precursor structure on the properties of polyacrylonitrile-based activated carbon hollow fiber[J]. J Appl Polym Sci, 1996, 59(11): 1725-1731.
    Mittal J, Mathur R B, Bahl O P. Post spinning modification of PAN fibres a review[J]. Carbon, 1997, 35(12): 1713-1721.
    Elzbieta P, Paul G R. Bulk and surface chemical functionalities of type III PAN-based carbon fibres[J]. Carbon, 2003, 41(10): 1905.
    Johnson D J. Structure-property relationship in carbon fibres[J]. Journal of Physics D: Applied Physics, 1987, 20(3): 286-291.
    Naoyuki Oya, Johnson David J. Longitudinal compressive behaviour and microstructure of PAN-based carbon fibres[J]. Carbon, 2001, 39(5): 635-645.
    Miyoshi K, Bin Y Z, Zhu D, et al. Small angle X-ray scattering from voids within fibers during the stabilization and carbonization stages[J]. Carbon, 2003, 41(5): 915-926.
    Yoshiki S, Masatoshi S, Katsuhiro Y, et al. Relationship between axial compression strength and longitudinal microvoid size for PAN-based carbon fibers[J]. Carbon, 2012, 50(8): 2860-2869.
    Thünemann A F, Ruland W. Microvoids in polyacrylonitrile fibers: A small-angle X-ray scattering study[J]. Macromolecules, 2000, 33(5): 1848-1852.
    Zhu C Z, Liu X F, Yu X L, et al. A small-angle X-ray scattering study and molecular dynamics simulation of microvoid evolution during the tensile deformation of carbon fibers[J]. Carbon, 2012, 50(1): 235-243.
    Ran S F, Zong X H, Fang D F, et al. Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in-situ synchrotron SAXS/WAXD[J]. Macromolecules, 2001, 34(8): 2569-2578.
    Lozano-Castelló D, Raymundo-Piñero E, Cazorla-Amorós D, et al. Characterization of pore distribution in activated carbon fibers by microbeam small angle X-ray scattering[J]. Carbon, 2002, 40(14): 2727-2735.
    Lode U, Pomper T, Karl A, Krosigk G V, et al. Development of crazes in polycarbonate, investigated by ultra small angle X-ray scattering of synchrotron radiation[J]. Macromol Rapid Commun, 1998, 19(1): 35-39.
    Li Z H, Gong Y J, Zhang Y, et al. Study of mesoporous silica materials by small angle X-ray scattering[J]. Chin Phys B, 2001, 10(5): 429-432.
    Sheng Y, Zhang C H, Xu Y, et al. Investigation of PAN-based carbon fiber microstructure by 2D-SAXS[J]. New Carbon Materials, 2009, 24(3): 270-276.
    Meng Z F. Theroy and Application of Small Angle X-ray Scattering[M]. Ji Lin Science and Technology Press, 1996.
    Stribeck N, Buzdugan E, Ghioca P, et al. Nanostructure evolution of SIS thermoplastic elastomers during straining as revealed by USAXS and two-dimensional chord distribution analysis[J]. Macromol Chem Phys, 2002, 203(4): 636-644.
    Veroni B, Sergio S F, Rainer G, et al. SAXS and the gas transport in polyether-block-polyamide copolymer membranes[J]. Macromolecules, 2003, 36(3): 749-758.
    Takaku A, Masatoshi S. Characterization of microvoids in polyacrylonitrile-based carbon fibres[J]. J Mater Sci, 1986, 21(12): 4443-4450.
    Masatoshi S, Tomomi K, Ryota O, et al. Small-angle X-ray scattering study on the tensile fracture process of poly(ethylene terephthalate) fiber[J]. Macromolecules, 2008, 41(13): 4758-4765.
    M Shioya , A Takaku. Characterization of microvoids in carbon fibers by absolute small-angle X-ray measurements on a fiber bundle[J]. J App Phys, 1985, 58(11): 4074-4082.
    Wilchinsky Z W. Measurement of orientation in polypropylene film[J]. J Appl Phys, 1960, 31(11): 1969-1972.
    Ma L D. 2004 Modern Polycrystalline X-ray Diffraction Experimental Technology and Data Analysis[M]. Beijing: Chemical Industry Press.
    Effler L J, Fellers J F. Structural orientation functions for anisotropic small-angle scattering[J]. Journal of Physics D: Applied Physics, 1992, 25(1): 74-78.
    Perret R, Ruland W. Single and multiple X-ray small-angle scattering of carbon fibres[J]. J Appl Cryst, 1969, 2(5): 209-211.
    Gupta A K, Maiti A K. Effect of heat treatment on the structure and mechanical properties of polyacrylonitrile fibers[J]. J Appl Polym Sci, 1982, 27(7): 2409-2416.
    Ji M X, Wang C G, Bai Y J, et al. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization[J]. Polymer Bulletin, 2007, 59(4): 527-536.
    Gregor S D. High modulus polypropylene fibers. II. Influence of fiber preparation upon structure and morphology[J]. J Appl Ploym Sci, 2006, 100(2): 1067-1082.
    Zuo F, Keum J K, Chen X M, et al. The role of interlamellar chain entanglement in deformation-induced structure changes during uniaxial stretching of isotactic polypropylene[J]. Polymer, 2007, 48(23): 6867-6880.
    Cheng L, Guo T F. Void interaction and coalescence in polymeric materials[J]. Int J Solid Struct, 2007, 44(6): 1787-1808.
    Potirniche G P, Horstemeyer M F, Wagner G J, et al. A molecular dynamics study of void growth and coalescence in single crystal nickel[J]. Int J Plastic, 2006, 22(2): 257-278.
    Brain R P, Martin E V, Kell M, et al. Analysing the nanoporous structure of aramid fibres[J]. J Appl Cryst, 2010, 43(4): 837-849.
    Stefan Fischer, Tobias Diesner, Bernhard Rieger, et al. Simulating and evaluating small-angle X-ray scattering of micro-voids in polypropylene during mechanical deformation[J]. J Appl Cryst, 2009, 43(3): 603-610.
    Weisstein E W. Log Normal Distribution[M]. Mathworld, http://mathworld.wolfram.com/LogNormalDistribution.html, 2015.
    Crow E L, Shimizu K. Log Normal Distributions: Theory and Applications[M]. New York: Marcel Dekker Inc, 1988.
    J Söderlund, L B Kiss, G A Niklasson, et al. Lognormal size distributions in particle growth processes without coagulation[J]. Phys Rev Lett, 1998, 80(11): 2386-2388.
  • 加载中
图(1)
计量
  • 文章访问数:  1021
  • HTML全文浏览量:  178
  • PDF下载量:  910
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-18
  • 录用日期:  2017-04-26
  • 修回日期:  2017-04-08
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回