留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固体火箭发动机高速高浓度两相流冲刷条件下4D编织炭/炭复合材料烧蚀特性研究

刘洋 裴净秋 李江 何国强

刘洋, 裴净秋, 李江, 何国强. 固体火箭发动机高速高浓度两相流冲刷条件下4D编织炭/炭复合材料烧蚀特性研究. 新型炭材料, 2017, 32(2): 144-151. doi: 10.1016/S1872-5805(17)60112-4
引用本文: 刘洋, 裴净秋, 李江, 何国强. 固体火箭发动机高速高浓度两相流冲刷条件下4D编织炭/炭复合材料烧蚀特性研究. 新型炭材料, 2017, 32(2): 144-151. doi: 10.1016/S1872-5805(17)60112-4
LIU Yang, PEI Jing-qiu, LI Jiang, HE Guo-qiang. Ablation characteristics of a 4D carbon/carbon composite under a high flux of combustion products with a high content of particulate alumina in a solid rocket motor. New Carbon Mater., 2017, 32(2): 144-151. doi: 10.1016/S1872-5805(17)60112-4
Citation: LIU Yang, PEI Jing-qiu, LI Jiang, HE Guo-qiang. Ablation characteristics of a 4D carbon/carbon composite under a high flux of combustion products with a high content of particulate alumina in a solid rocket motor. New Carbon Mater., 2017, 32(2): 144-151. doi: 10.1016/S1872-5805(17)60112-4

固体火箭发动机高速高浓度两相流冲刷条件下4D编织炭/炭复合材料烧蚀特性研究

doi: 10.1016/S1872-5805(17)60112-4
基金项目: 国家自然科学基金(51276150,51576165);中央高校基本科研业务费专项资金(3102014ZD0032).
详细信息
    通讯作者:

    刘洋,博士,副教授.E-mail:liuyang802@nwpu.edu.cn

  • 中图分类号: TQ342+.74

Ablation characteristics of a 4D carbon/carbon composite under a high flux of combustion products with a high content of particulate alumina in a solid rocket motor

Funds: National Natural Science Foundation of China (51276150, 51576165); Fundamental Research Funds for the Central Universities (3102014ZD0032).
  • 摘要: 为了研究固体火箭发动机内高速高浓度冲刷条件下4D编织炭/炭复合材料的烧蚀行为,本文采用一种特别设计的小型实验发动机开展热试实验研究,分别测量获得了试验后炭/炭材料试件的炭棒和纤维束最大烧蚀率,并细分析了冲刷区域和非冲刷区域的烧蚀形貌和微观结构。结果表明:在核心冲刷区域,炭/炭材料试件表面出现了明显的凹坑;结合数值模拟结果可知当颗粒冲刷速度超过一定值后,机械剥蚀效应会大幅增加,是炭/炭材料烧蚀加剧的主导因素;和通常状态不同,在实验条件下,炭棒比纤维束更易受到两相流侵蚀;在颗粒的冲蚀作用下,炭棒表面形成了大量类陨石坑的孔洞,炭棒中的纤维头部几乎是平的,并且低于周围的基体;另外根据试验后试件的微观形貌,讨论了炭棒和纤维束之间界面的几种破坏模式,分析了界面易于被破坏的原因。
  • Liggett N D, Menon S. Simulation of nozzle erosion process in a solid propellant rocket motor[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA Paper: 2007.
    Guiming S, Yu Z, Yujin W, Tingquan L. Throat materials for solid rocket motors[J]. Journal of Solid Rocket Technology. 1998, 2: 12.
    Feng Z, Ruilian Y, Chengzhao Y, et al. Ablative erosion performance of four thermal protection composite materials[J]. Aerospace Materials & Technology, 2001, 31(006): 10-13.
    Yu J, Ma Z, Jiang G, et al. Pattern surface measure and ablation analysis for C/C composite material[J]. Aerospace Materials & Technology, 2003, 33(1): 36-39.
    Andrew C, Eric B, Ragini A, et al. Design of a solid rocket motor for characterization of submerged nozzle erosion[C]. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: American Institute of Aeronautics and Astronautics 2008.
    Wirzberger H, Yaniv S. Prediction of erosion in a solid rocket motor by alumina particles[C]. 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: 1-16.
    Xu X, Huang h. Progress of research in denudation mechanism[J]. Failire analysis and prevention, 2007, 2(3): 59-63.
    Li KZ, Shen XT, Li HJ, et al. Ablation of the carbon/carbon composite nozzle-throats in a small solid rocket motor[J]. Carbon, 2011, 49(4): 1208-1215.
    Chen B, Zhang LT, Cheng LF, et al. Erosion resistance of needled carbon/carbon composites exposed to solid rocket motor plumes[J]. Carbon, 2009, 47(6): 1474-1479.
    Sarkar S, Sekharan VG, Mitra R, et al. The solid particle erosion behavior of carbon/carbon and carbon/phenolic composite used in re-entry vehicles[J]. Tribol T, 2009, 52(6): 777-787.
    Oka YI, Okamura K, Yoshida T. Practical estimation of erosion damage caused by solid particle impact - Part 1: Effects of impact parameters on a predictive equation[J]. Wear, 2005, 259(1-6): 95-101.
    Thakre P, Rawat R, Clayton R, et al. Mechanical erosion of graphite nozzle in solid-propellant rocket motor[J]. J Propul Power, 2013, 29(3): 593-601.
    Li Q, Li J, He GQ, et al. Erosion of carbon/carbon composites using a low-velocity, high-particle-concentration two-phase jet in a solid rocket motor[J]. Carbon, 2014, 67: 140-145.
    Peng LN, He GQ, Li J, et al. Effect of combustion gas mass flow rate on carbon/carbon composite nozzle ablation in a solid rocket motor[J]. Carbon, 2012, 50(4): 1554-1562.
    Gordon S, Mcbride B. Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis[Z]. 1994.
    McBride B J, Gordon S. Computer program for calculation of complex chemical equilibrium compositions and applications: II. Users' manual and program description[Z]. NASA reference publication, 1996, 1311: 84-85.
    Glorieux B, Millot F, Rifflet J-C,et al. Density of superheated and undercooled liquid alumina by a contactless method[J]. International journal of Thermophysics, 1999, 20(4): 1085-1094.
    Sinn H, Glorieux B, Hennet L, et al. Microscopic dynamics of liquid aluminum oxide[J]. Science, 2003, 299(5615): 2047-2049.
    Liu Y. The experimental simulation technique of flow field under high acceleration condition[D]. Xi'an: Northwestern Polytechnical University, Master thesis, 2004.
    Cortopassi A C, Boyer E, Kuo K K. Update: a subscale solid rocket motor for characterization of submerged nozzle erosion[C]. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, 2009, 5172: 2009.
    Li Q, He G Q, Liu P J, et al. Coupled simulation of fluid flow and propellant burning surface regression in a solid rocket motor[J]. Comput Fluids, 2014, 93: 146-152.
    Zhang X, Liu P, Li P, et al. Heat flux measurement method and experimental research in SRM[J]. Journal of Solid Rocket Technology, 2011, 34(1): 131-134.
  • 加载中
图(1)
计量
  • 文章访问数:  592
  • HTML全文浏览量:  164
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-27
  • 录用日期:  2017-04-26
  • 修回日期:  2017-04-09
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回