留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以氧化石墨烯为酸催化剂制备2,5-二甲基-N-苯基吡咯

陈春燕 郭晓亚 吕广强 Christian Marcus Pedersen 乔岩 侯相林 王英雄

陈春燕, 郭晓亚, 吕广强, Christian Marcus Pedersen, 乔岩, 侯相林, 王英雄. 以氧化石墨烯为酸催化剂制备2,5-二甲基-N-苯基吡咯. 新型炭材料, 2017, 32(2): 160-167. doi: 10.1016/S1872-5805(17)60113-6
引用本文: 陈春燕, 郭晓亚, 吕广强, Christian Marcus Pedersen, 乔岩, 侯相林, 王英雄. 以氧化石墨烯为酸催化剂制备2,5-二甲基-N-苯基吡咯. 新型炭材料, 2017, 32(2): 160-167. doi: 10.1016/S1872-5805(17)60113-6
CHEN Chun-yan, GUO Xiao-ya, LU Guang-qiang, Christian Marcus Pedersen, QIAO Yan, HOU Xiang-lin, WANG Ying-xiong. Graphene oxide: a novel acid catalyst for the synthesis of 2, 5-dimethyl-N-phenyl pyrrole by the Paal-Knorr condensation. New Carbon Mater., 2017, 32(2): 160-167. doi: 10.1016/S1872-5805(17)60113-6
Citation: CHEN Chun-yan, GUO Xiao-ya, LU Guang-qiang, Christian Marcus Pedersen, QIAO Yan, HOU Xiang-lin, WANG Ying-xiong. Graphene oxide: a novel acid catalyst for the synthesis of 2, 5-dimethyl-N-phenyl pyrrole by the Paal-Knorr condensation. New Carbon Mater., 2017, 32(2): 160-167. doi: 10.1016/S1872-5805(17)60113-6

以氧化石墨烯为酸催化剂制备2,5-二甲基-N-苯基吡咯

doi: 10.1016/S1872-5805(17)60113-6
基金项目: 国家重点基础研究发展规划项目资助(973计划项目,2012CB215305);国家自然科学基金(21106172,21403273);中国科学院引进杰出技术人才计划(2011137);中国科学院国际人才交流计划项目资助(2015VMB052).
详细信息
    通讯作者:

    侯相林,研究员.E-mail:houxianglin@sxicc.ac.cn;王英雄,副研究员.E-mail:wangyx@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Graphene oxide: a novel acid catalyst for the synthesis of 2, 5-dimethyl-N-phenyl pyrrole by the Paal-Knorr condensation

Funds: Major State Basic Research Development Program of China (973 Program, 2012CB215305); National Natural Science Foundation of China (21106172, 21403273); Youth Innovation Promotion Association of Chinese Academy of Sciences (2011137); CAS President's International Fellowship Initiative (2015VMB052).
  • 摘要: 介绍了氧化石墨烯作为一种高效且可回收的催化剂应用于2,5-己二酮与苯胺通过Paal-Knorr缩合反应合成N-取代吡咯。研究了反应时间、反应温度、溶剂、催化剂用量以及苯胺与2,5-己二酮的摩尔比对2,5-二甲基-N-苯基吡咯收率的影响。通过原位核磁技术在分子水平上跟踪了Paal-Knorr缩合的反应过程。结果表明在25℃下通过氧化石墨烯的催化作用反应6 h后吡咯的最大收率可达到90%。氧化石墨烯易回收,且经5次回收使用后还能表现出很好的循环使用性和高催化性能。
  • Michlik S, Kempe R. A sustainable catalytic pyrrole synthesis[J]. Nature Chemistry, 2013, 5: 140-144.
    Bhardwaj V, Gumber D, Abbot V, et al. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics[J]. RSC Advances, 2015, 5: 15233-15266.
    Ackermann L, Kaspar L T, Gschrei C J. Hydroamination/Heck reaction sequence for a highly regioselective one-pot synthesis of indoles using 2-chloroaniline[J]. Chemical Communications, 2004: 2824-2825.
    Alberola A, Ortega A G, Sadaba M L, et al. Versatility of weinreb amides in the knorr pyrrole synthesis[J]. Tetrahedron, 1999, 55: 6555-6566.
    Aghapoor K, Ebadi-Nia L, Mohsenzadeh F, et al. Silica-supported bismuth(III) chloride as a new recyclable heterogeneous catalyst for the Paal-Knorr pyrrole synthesis[J]. Journal of Organometallic Chemistry, 2012, 708-709: 25-30.
    Banik B K, Samajdar S, Banik I. Simple synthesis of substituted pyrroles[J]. Journal of Organic Chemistry, 2004, 69: 213-216.
    Rahmatpour A. Polystyrene-supported GaCl3 as a highly efficient and recyclable heterogeneous Lewis acid catalyst for one-pot synthesis of N-substituted pyrroles[J]. Journal of Organometallic Chemistry, 2012, 712: 15-19.
    Curini M, Montanari F, Rosati O, et al. Layered zirconium phosphate and phosphonate as heterogeneous catalyst in the preparation of pyrroles[J]. Tetrahedron Letters, 2003, 44: 3923-3925.
    Veisi H. Silica sulfuric acid (SSA) as a solid acid heterogeneous catalyst for one-pot synthesis of substituted pyrroles under solvent-free conditions at room temperature[J]. Tetrahedron Letters, 2010, 51: 2109-2114.
    Yuan S Z, Liu J, Xu L. A convenient synthesis of pyrroles catalyzed by acidic resin under solvent-free condition[J]. Chinese Chemical Letters, 2010, 21: 664-668.
    Wang B, Gu Y, Luo C, et al. Pyrrole synthesis in ionic liquids by Paal-Knorr condensation under mild conditions[J]. Tetrahedron Letters, 2004, 45: 3417-3419.
    Darabi H R, Aghapoor K, Darestani Farahani, A. et al. Vitamin B1 as a metal-free organocatalyst for greener Paal-Knorr pyrrole synthesis[J]. Environmental Chemistry Letters, 2012, 10: 369-375.
    Zhang Z H, Li J J, Li T S. Ultrasound-assisted synthesis of pyrroles catalyzed by zirconium chloride under solvent-free conditions[J]. Ultrason Sonochemistry, 2008, 15: 673-676.
    Wang S F, Guo C L, Cui K K, et al. Lactic acid as an invaluable green solvent for ultrasound-assisted scalable synthesis of pyrrole derivatives[J]. Ultrason Sonochemistry, 2015, 26: 81-86.
    Dallinger D, Kappe C O. Microwave-assisted synthesis in water as solvent[J]. Chemical Reviews, 2007, 107: 2563-2591.
    Cheraghi S, Saberi D, Heydari A. nanomagnetically modified sulfuric acid (γ-Fe2O3@SiO2-OSO3H): An efficient, fast, and reusable catalyst for greener Paal-Knorr pyrrole synthesis[J]. Catalysis Letters, 2014, 144: 1339-1343.
    Yang L, Wang X-z, Liu Y, et al. Monolayer MoS2 anchored on reduced graphene oxide nanosheets for efficient hydrodesulfurization[J]. Applied Catalysis B: Environmental, 2017, 200: 211-221.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Materials Letters, 2015, 157: 273-276.
    Lv G, Wang H, Yang Y, et al. Aerobic selective oxidation of 5-hydroxymethylfurfural over nitrogen-doped graphene materials with 2,2,6,6-tetramethylpiperidin-oxyl as co-catalyst[J]. Catalyst Science & Technology, 2016, 6: 2377-2386.
    Su D S, Perathoner S, Centi G. Nanocarbons for the development of advanced catalysts[J]. Chemical Reviews, 2013, 113: 5782-5816.
    Gao X, Zhu S, Li Y. Graphene oxide as a facile solid acid catalyst for the production of bioadditives from glycerol esterification[J]. Catalysis Communications, 2015, 62: 48-51.
    Dreyer D R, Jia H P, Bielawski C W. Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions[J]. Angewandte Chemie International Edition, 2010, 49: 6813-6816.
    Dhakshinamoorthy A, Alvaro M, Puche M, et al. Graphene oxide as catalyst for the acetalization of aldehydes at room temperature[J]. ChemCatChem, 2012, 4: 2026-2030.
    Zhu S, Chen C, Xue Y, et al. Graphene oxide: An efficient acid catalyst for alcoholysis and esterification reactions[J]. ChemCatChem, 2014, 6: 3080-3083.
    Wang H, Deng T, Wang Y, et al. Graphene oxide as a facile acid catalyst for the one-pot conversion of carbohydrates into 5-ethoxymethylfurfural[J]. Green Chemistry, 2013, 15: 2379.
    Wang H, Kong Q, Wang Y, et al. Graphene oxide catalyzed dehydration of fructose into 5-Hydroxymethylfurfural with isopropanol as cosolvent[J]. ChemCatChem, 2014, 6: 728-732.
    Wang Y, Pedersen C M, Qiao Y, et al. In situ NMR spectroscopy: inulin biomass conversion in ZnCl2 molten salt hydrate medium-SnCl4 addition controls product distribution[J]. Carbohydrate Polymers, 2015, 115: 439-443.
    Lv G, Wang H, Yang Y, et al. Graphene oxide: A convenient metal-Free carbocatalyst for facilitating aerobic oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran[J]. Acs Catalysis, 2015, 5: 5636-5646.
    Lv G, Wang H, Yang Y, et al. Direct synthesis of 2,5-diformylfuran from fructose with graphene oxide as a bifunctional and metal-free catalyst[J]. Green Chemistry, 2016, 18: 2302-2307.
    Rundlof T, Mathiasson M, Bekiroglu S, et al. Survey and qualification of internal standards for quantification by 1H NMR spectroscopy[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 52: 645-651.
    Mahmoudi H, Jafari A A. Facial preparation of sulfonic acid-functionalized magnetite-coated maghemite as a magnetically separable catalyst for pyrrole synthesis[J]. Chem Cat Chem, 2013, 5: 3743-3749.
    Zhu S, Wang J, Fan W. Graphene-based catalysis for biomass conversion[J]. Catalyst Science & Technology, 2015, 5: 3845-3858.
    Cho H, Madden R, Nisanci B, et al. The Paal-Knorr reaction revisited. A catalyst and solvent-free synthesis of underivatized and N-substituted pyrroles[J]. Green Chemistry, 2015, 17: 1088-1099.
    Akba?lar D, Demirkol O, Giray S. Paal-Knorr pyrrole synthesis in water[J]. Synthetic Communications, 2014, 44: 1323-1332.
  • 加载中
图(1)
计量
  • 文章访问数:  793
  • HTML全文浏览量:  203
  • PDF下载量:  526
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-20
  • 录用日期:  2017-04-26
  • 修回日期:  2017-04-10
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回