留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨/硝酸钠配比与反应时间对氧化石墨烯物理化学性质的影响

Edwin T. Mombeshora Patrick G. Ndungu Vincent O. Nyamori

Edwin T. Mombeshora, Patrick G. Ndungu, Vincent O. Nyamori. 石墨/硝酸钠配比与反应时间对氧化石墨烯物理化学性质的影响. 新型炭材料, 2017, 32(2): 174-187. doi: 10.1016/S1872-5805(17)60114-8
引用本文: Edwin T. Mombeshora, Patrick G. Ndungu, Vincent O. Nyamori. 石墨/硝酸钠配比与反应时间对氧化石墨烯物理化学性质的影响. 新型炭材料, 2017, 32(2): 174-187. doi: 10.1016/S1872-5805(17)60114-8
Edwin T. Mombeshora, Patrick G. Ndungu, Vincent O. Nyamori. Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Mater., 2017, 32(2): 174-187. doi: 10.1016/S1872-5805(17)60114-8
Citation: Edwin T. Mombeshora, Patrick G. Ndungu, Vincent O. Nyamori. Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide. New Carbon Mater., 2017, 32(2): 174-187. doi: 10.1016/S1872-5805(17)60114-8

石墨/硝酸钠配比与反应时间对氧化石墨烯物理化学性质的影响

doi: 10.1016/S1872-5805(17)60114-8
详细信息
  • 中图分类号: TQ127.1+1

Effect of graphite/sodium nitrate ratio and reaction time on the physicochemical properties of graphene oxide

  • 摘要: 通过改变石墨/硝酸钠配比和反应时间,合成出氧化石墨烯(GO),探讨最佳的石墨/硝酸钠配比、反应时间来获得氧含量最高的GO以及氧含量对GO的物理化学性质的影响。采用TEM、SEM、AFM、XRD、Raman、FTIR、TGA、UV-vis等仪器对样品进行表征。增加硝酸钠用量,能提高GO的氧含量、比表面积、孔体积和孔径,但降低结晶度。不同反应时间对氧含量无明显影响。随着氧含量的增加,物理化学性质如层间距和缺陷强度增加,而热稳定性降低。不同的石墨/硝酸钠配比和反应时间能改变GO的物理化学性质如氧含量、结晶度、热稳定性和整体形貌。
  • Geim A K. Graphene: Status and prospects[J]. Science, 2009, 324: 1530-1534.
    Mombeshora E T, Nyamori V O. A review on the use of carbon nanostructured materials in electrochemical capacitors[J]. International Journal of Energy Research, 2015, 39: 1955-1980.
    Chung C, Kim Y-K, Shin D, et al. Biomedical applications of graphene and graphene oxide[J]. Accounts of Chemical Research, 2013, 46(10): 2211-2224.
    Tozzini V, Pellegrini V. Prospects for hydrogen storage in graphene[J]. Phys Chem Chem Phys, 2013, 15(1): 80-89.
    Konios D, Kakavelakis G, Petridis C, et al. Highly efficient organic photovoltaic devices utilizing work-function tuned graphene oxide derivatives as the anode and cathode charge extraction layers[J]. Journal of Mateial Chemistry A, 2016, 4: 1612-1623.
    Kakavelakis G, Konios D, Stratakis E, et al. Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer[J]. Chemistry of Materials, 2014, 26 (20): 5988-5993.
    Balis N, Konios D, Stratakis E, et al. Ternary organic solar cells with reduced graphene oxide-Sb2S3 hybrid nanosheets as the cascade material[J]. ChemNanoMat, 2015, 1(5): 346-352.
    Sygletou M, Tzourmpakis P, Petridis C, et al. Laser induced nucleation of plasmonic nanoparticles on two-dimensional nanosheets for organic photovoltaics[J]. Journal of Material Chemistry A, 2016, 4: 1020-1027.
    Noori K, Konios D, Stylianakis M M, et al. Energy-level alignment and open-circuit voltage at graphene/polymer interfaces: theory and experiment[J]. 2D Materials, 2016, 3(1): 015003.
    Stylianakis M M, Konios D, Kakavelakis G, et al. Efficient ternary organic photovoltaics incorporating a graphene-based porphyrin molecule as a universal electron cascade material[J]. Nanoscale, 2015, 7(42): 17827-17835.
    Chen X, Tang X-Z, Liang Y N, et al. Controlled thermal functionalization for dispersion enhancement of multi-wall carbon nanotube in organic solvents[J]. Journal of Material of Science, 2016, 51: 5625-5634.
    Agresti A, Pescetelli S, Cinà L, et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J]. Advanced Functional Materials, 2016, 26: 2686-2694.
    Yang D, Zhou L, Chen L, et al. Chemically modified graphene oxides as a hole transport layer in organic solar cells[J]. Chem Commun (Camb), 2012, 48(65): 8078-8080.
    Hassoun J, Bonaccorso F, Agostini M, et al. An advanced lithium-ion battery based on a graphene anode and a lithium iron phosphate athode[J]. Nano Letters, 2014, 14(8): 4901-4906.
    Chen R, Zhao T, Tian T, et al. Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries[J]. APL Materials, 2014, 2(12): 124109.
    Sun J, Lee H-W, Pasta M, et al. A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries[J]. Nature Nanotechnology, 2015, 10:980-985.
    Viskadouros G, Konios D, Kymakis E, et al. Electron field emission from graphene oxide wrinkles[J]. RSC Advances, 2016, 6: 2768-2773.
    Viskadouros G, Konios D, Kymakis E, et al. Direct laser writing of flexible graphene field emitters[J]. Applied Physics Letters, 2014, 105: 203104.
    Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac Fermions in graphene[J]. Nature, 2005, 438: 197-200.
    Schwierz F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496.
    Liu J, Xue Y, Gao Y, et al. Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells[J]. Advanced Materials, 2012, 24(17): 2228-2233.
    Paredes J I, Villar-Rodil S, Solis-Fernandez P, et al. Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide[J]. Langmuir, 2009, 25(10): 5957-5968.
    Marcano D C, Kosynkin D V, Berlin J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2013, 4(8): 4806-4814.
    Pei S, Cheng H-M. The reduction of graphene oxide[J]. Carbon, 2012, 50(9): 3210-3228.
    Mo Y, Liu Q, Fan J, et al. Heterocyclic aramid nanoparticle-assisted graphene exfoliation for fabrication of pristine graphene-based composite paper[J]. Journal of Nanoparticle Research, 2015, 17(7): 1-13.
    Yang Z Z, Zheng Q B, Qiu H X, et al. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. New Carbon Materials, 2015, 30(1): 41-47.
    Botas C, Álvarez P, Blanco P, et al. Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods[J]. Carbon, 2013, 65(0): 156-164.
    Wu T T, Ting J M. Preparation and characteristics of graphene oxide and its thin films[J]. Surface and Coatings Technology, 2013, 231(0): 487-491.
    Wojtoniszak M, Mijowska E. Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale[J]. Journal of Nanoparticle Research, 2012, 14(11): 1248.
    Du X, Guo P, Song H, et al. Graphene nanosheets as electrode material for electric double-layer capacitors[J]. Electrochimica Acta, 2010, 55(16): 4812-4819.
    Wang Q, Wang J, Lu C X, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials, 2015, 30(4): 349-356.
    El-Khodary S A, El-Enany G M, El-Okr M, et al. Preparation and characterization of microwave reduced graphite oxide for high-performance supercapacitors[J]. Electrochimica Acta, 2014, 150: 269-278.
    Dreyer D R, Park S, Bielawski C W, et al. The chemistry of graphene oxide[J]. Chemical Society Reviews, 2010, 39(1): 228-240.
    Yang J, Gunasekaran S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors[J]. Carbon, 2013, 51: 36-44.
    Jeong H, Lee K M, Ahn Y H, et al. Non-contact local conductance mapping of individual graphene oxide sheets during the reduction process[J]. J Phys Chem Lett, 2015, 6(13): 2629-35.
    Thema F T, Moloto M J, Dikeo E D, et al. Synthesis and characterisation of graphene thin films by chemical reduction of exfoliated and intercalated graphite oxide[J]. Journal of Chemistry, 2013: 1-6.
    Mohan V B, Brown R, Jayaraman K, et al. Characterisation of reduced graphene oxide: Effects of reduction variables on electrical conductivity[J]. Materials Science and Engineering: B, 2015, 193: 49-60.
    Hung W S, Tsou C H, De Guzman M, et al. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varyingd-spacing[J]. Chemistry of Materials, 2014, 26(9): 2983-2990.
    Terrones M, Botello-Méndez A R, Campos-Delgado J, et al. Graphene and graphite nanoribbons: Morphology, properties, synthesis, defects and applications[J]. Nano Today, 2010, 5: 351-372.
    Liu W W, Chai S P, Mohamed A R, et al. Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1171-1185.
    Zhu X, Ning G, Fan Z, et al. One-step synthesis of a graphene-carbon nanotube hybrid decorated by magnetic nanoparticles[J]. Carbon, 2012, 50: 2764-2771.
    Cai X, Zhang Q, Wang S, et al. Surfactant-assisted synthesis of reduced graphene oxide/polyaniline composites by gamma irradiation for supercapacitors[J]. Journal of Materials Science, 2014, 49(16): 5667-5675.
    Wang Z M, Yoshizawa N, Kosuge K, et al. Quiescent hydrothermal synthesis of reduced graphene oxide-periodic mesoporous silica sandwich nanocomposites with perpendicular mesochannel alignments[J]. Adsorption, 2013, 20(2-3): 267-274.
  • 加载中
图(1)
计量
  • 文章访问数:  646
  • HTML全文浏览量:  106
  • PDF下载量:  600
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-10
  • 录用日期:  2017-04-26
  • 修回日期:  2017-02-10
  • 刊出日期:  2017-04-28

目录

    /

    返回文章
    返回