留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步硬模板法制备层次孔炭及其在锂硫电池中的应用

牛树章 吴思达 吕伟 杨全红 康飞宇

牛树章, 吴思达, 吕伟, 杨全红, 康飞宇. 一步硬模板法制备层次孔炭及其在锂硫电池中的应用. 新型炭材料, 2017, 32(4): 289-296. doi: 10.1016/S1872-5805(17)60123-9
引用本文: 牛树章, 吴思达, 吕伟, 杨全红, 康飞宇. 一步硬模板法制备层次孔炭及其在锂硫电池中的应用. 新型炭材料, 2017, 32(4): 289-296. doi: 10.1016/S1872-5805(17)60123-9
NIU Shu-zhang, WU Si-da, LU Wei, YANG Quan-hong, KANG Fei-yu. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries. New Carbon Mater., 2017, 32(4): 289-296. doi: 10.1016/S1872-5805(17)60123-9
Citation: NIU Shu-zhang, WU Si-da, LU Wei, YANG Quan-hong, KANG Fei-yu. A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries. New Carbon Mater., 2017, 32(4): 289-296. doi: 10.1016/S1872-5805(17)60123-9

一步硬模板法制备层次孔炭及其在锂硫电池中的应用

doi: 10.1016/S1872-5805(17)60123-9
基金项目: 国家重点基础研究发展计划(2014CB932400);国家自然科学基金(U1401243);深圳基础研究项目(JCYJ20150529164918734,JCYJ20150331151358140,JCYJ20150331151358136).
详细信息
    作者简介:

    牛树章,博士研究生,E-mail:nshuzhang@163.com

    通讯作者:

    吕伟,副教授,E-mail:lv.wei@sz.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

A one-step hard-templating method for the preparation of a hierarchical microporous-mesoporous carbon for lithium-sulfur batteries

Funds: National Key Basic Research Program of China (2014CB932400);National Natural Science Foundation of China (U1401243);Shenzhen Basic Research Project (JCYJ20150529164918734,JCYJ20150331151358140,JCYJ20150331151358136).
  • 摘要: 采用一步硬模板法炭化酚醛树脂和葡萄糖酸镁制备得到具有大表面积和层次化结构的微孔-中孔炭材料(HMMC)。在炭化过程中,葡萄糖酸镁分解形成纳米氧化镁(MgO)可以作为硬模板。制备得到的HMMC具有高的比表面积(1 560 m2·g-1),大的孔容(2.6 cm3·g-1),可以实现较高硫的负载量,并可以提供硫体积膨胀的空间。此外,相互连通的孔结构和炭骨架也能够提供快速的电子和锂离子的传输通道。因此,与硫复合后得到的碳-硫杂化材料(HMMC-S)在0.3 C电流密度下,初始放电容量高达939 mAh·g-1,经150周循环后容量仍有731 mAh·g-1, 每周的容量损失率仅为0.15%。在较高的电流密度2 C下,其容量仍可达626 mAh·g-1,表现出优异的倍率性能和长循环稳定性。
  • Manthiram A, Chung S H, Zu C. Lithium-sulfur batteries: Progress and prospects[J]. Advanced Materials, 2015, 27(12): 1980-2006.
    Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016, 2: 76-106.
    Zhang Q, Cheng X B, Huang J Q, et al. Review of carbon materials for advanced lithium-sulfur batteries[J]. New Carbon Materials, 2014, 29(4): 241-264.
    Huang J Q, Zhang Q, Wei F. Multi-functional separator/interlayer system for high-stable lithium-sulfur batteries: Progress and Prospects[J]. Energy Storage Materials, 2015, 1: 127-145.
    Li F F, Lu W, Niu S Z, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J]. New Carbon Materials, 2014, 29(4): 309-315.
    Yu M, Li R, Wu M, et al. Graphene materials for lithium-sulfur batteries[J]. Energy Storage Materials, 2015, 1: 51-73.
    Lv W, Li Z, Deng Y, et al. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges[J]. Energy Storage Materials, 2016, 2: 107-138.
    Zhu L, Zhu W C, Cheng X B, et al. Cathode materials based on carbon nanotubes for high-energy-density lithium-sulfur batteries[J]. Carbon, 2014, 75(8): 161-168.
    Niu S, Lv W, Zhang C, et al. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries[J]. Journal of Power Sources, 2015, 295: 182-189.
    Xin S, Gu L, Zhao N-H, et al. Smaller sulfur molecules promise better lithium-sulfur batteries[J]. Journal of the American Chemical Society, 2012, 134(45): 18510-18513.
    Werner J G, Johnson S S, Vijay V, et al. Carbon-sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium-sulfur batteries[J]. Chemistry of Materials, 2015, 27(9): 3349-3357.
    Xu F, Tang Z, Huang S, et al. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage[J]. Nat Commun, 2015, 6: 7221.
    Tang Z W, Xu F, Liang Y R, et al. Preparation and electrochemical performance of a hierarchically porous activated carbon aerogel /sulfur cathode for lithium-sulfur batteries[J]. New Carbon Materials, 2015, 30(4): 319-326.
    Chen S, Sun B, Xie X, et al. Multi-chambered micro/mesoporous carbon nanocubes as new polysulfides reserviors for lithium-sulfur batteries with long cycle life[J]. Nano Energy, 2015, 16(0): 268-280.
    Liang C, Dudney N J, Howe J Y. Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery[J]. Chemistry of Materials, 2009, 21(19): 4724-4730.
    Gorka J, Zawislak A, Choma J, et al. KOH activation of mesoporous carbons obtained by soft-templating[J]. Carbon, 2008, 46(8): 1159-1161.
    Chen Xa, Xiao Z, Ning X, et al. Sulfur-impregnated, sandwich-type, hybrid carbon nanosheets with hierarchical porous structure for high-performance lithium-sulfur batteries[J]. Advanced Energy Materials, 2014, 4(13): 1301988.
    Wang J, Wu Y, Shi Z, et al. Mesoporous carbon with large pore volume and high surface area prepared by a co-assembling route for lithium-sulfur batteries[J]. Electrochimica Acta, 2014, 144: 307-314.
    Morishita T, Tsumura T, Toyoda M, et al. A review of the control of pore structure in MgO-templated nanoporous carbons[J]. Carbon, 2010, 48(10): 2690-2707.
    Morishige K, Tateishi N. Adsorption hysteresis in ink-bottle pore[J]. The Journal of Chemical Physics, 2003, 119(4): 2301-2306.
    Li Z, Wu D, Liang Y, et al. Synthesis of well-defined microporous carbons by molecular-scale templating with polyhedral oligomeric silsesquioxane moieties[J]. Journal of the American Chemical Society, 2014, 136(13): 4805-4808.
    Wu D, Li Z, Zhong M, et al. Templated synthesis of nitrogen-enriched nanoporous carbon materials from porogenic organic precursors prepared by ATRP[J]. Angewandte Chemie International Edition, 2014, 53(15): 3957-3960.
    Mai W, Sun B, Chen L, et al. Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres[J]. Journal of the American Chemical Society, 2015, 137(41): 13256-13259.
    Zhang C, Liu D-H, Lv W, et al. A high-density graphene-sulfur assembly: a promising cathode for compact Li-S batteries[J]. Nanoscale, 2015, 7(13): 5592-5597.
    Xu G, Ding B, Nie P, et al. Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2014, 6(1): 194-199.
    Niu S, Lv W, Zhang C, et al. A carbon sandwich electrode with graphene filling coated by N-doped porous carbon layers for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2015, 3(40): 20218-20224.
    Ji L W, Rao M M, Zheng H M, et al. Graphene oxide as a sulfur immobilizer in high performance lithium/sulfur cells[J]. Journal of the American Chemical Society, 2011, 133(46): 18522-18525.
    Ding B, Yuan C, Shen L, et al. Chemically tailoring the nanostructure of graphene nanosheets to confine sulfur for high-performance lithium-sulfur battery[J]. Journal of Materials Chemistry A, 2013, 1(4) : 1096-1101.
    Zu C, Manthiram A. Hydroxylated graphene-sulfur nanocomposites for high-rate lithium-sulfur batteries[J]. Advanced Energy Materials, 2013, 3(8): 1008-1012.
    Zhang J, Lv W, Tao Y, et al. Ultrafast high-volumetric sodium storage of folded-graphene electrodes through surface-induced redox reactions[J]. Energy Storage Materials, 2015, 1: 112-118.
    Niu S, Lv W, Zhou G, et al. N and S co-doped porous carbon spheres prepared using l-cysteine as a dual functional agent for high-performance lithium-sulfur batteries[J]. Chemical Communications, 2015, 51(100): 17720-17723.
    Kolosnitsyn V S, Kuzmina E V, Karaseva E V, et al. A study of the electrochemical processes in lithium-sulphur cells by impedance spectroscopy[J]. Journal of Power Sources, 2011, 196(3): 1478-1482.
  • 加载中
图(1)
计量
  • 文章访问数:  468
  • HTML全文浏览量:  58
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-26
  • 录用日期:  2017-08-31
  • 修回日期:  2017-07-30
  • 刊出日期:  2017-08-28

目录

    /

    返回文章
    返回