留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超顺排碳纳米管/高分子复合材料的手臂状电热型致动器

周智伟 严勤华 刘长洪 范守善

周智伟, 严勤华, 刘长洪, 范守善. 基于超顺排碳纳米管/高分子复合材料的手臂状电热型致动器. 新型炭材料, 2017, 32(5): 411-418. doi: 10.1016/S1872-5805(17)60132-X
引用本文: 周智伟, 严勤华, 刘长洪, 范守善. 基于超顺排碳纳米管/高分子复合材料的手臂状电热型致动器. 新型炭材料, 2017, 32(5): 411-418. doi: 10.1016/S1872-5805(17)60132-X
ZHOU Zhi-wei, YAN Qin-hua, LIU Chang-hong, FAN Shou-shan. An arm-like electrothermal actuator based on superaligned carbon nanotube/polymer composites. New Carbon Mater., 2017, 32(5): 411-418. doi: 10.1016/S1872-5805(17)60132-X
Citation: ZHOU Zhi-wei, YAN Qin-hua, LIU Chang-hong, FAN Shou-shan. An arm-like electrothermal actuator based on superaligned carbon nanotube/polymer composites. New Carbon Mater., 2017, 32(5): 411-418. doi: 10.1016/S1872-5805(17)60132-X

基于超顺排碳纳米管/高分子复合材料的手臂状电热型致动器

doi: 10.1016/S1872-5805(17)60132-X
基金项目: 国家重点基础研究发展计划(2012CB932301);国家自然科学基金(51572146).
详细信息
    作者简介:

    周智伟,博士研究生,E-mail:zhouzw07@126.com

    通讯作者:

    刘长洪,研究员,E-mail:chliu@mail.tsinghua.edu.cn;范守善,教授,E-mail:fss-dmp@tsinghua.edu.cn

  • 中图分类号: TB332

An arm-like electrothermal actuator based on superaligned carbon nanotube/polymer composites

Funds: National Basic Research Program of China (2012CB932301); Natural Science Foundation of China (51572146)
  • 摘要: 与超顺排碳纳米管薄膜相互浸润的高分子具有均匀的导电性、良好的生物兼容性、合适的力学性能,它在电热型致动器研究领域具有广阔的应用前景。在本文中,首先利用这种具有双层结构的复合材料制作了一个简单的U型小器件来展示电热致动器的工作原理,在电热的作用下该小器件能够产生730°的卷曲。其次,本文介绍了一种具有旋转结构手臂状的致动器(人工手臂)。在低电场(小于41 V or 500 V/m)的作用下,该人工手臂能够产生大的形变(大于700°旋转,49.2%的长度收缩和26.4%的直径收缩)。所制作的人工手臂和U型小器件能够受电压(或电功率)的精确控制。该人工手臂能够握起4 g (自重的26倍)的重物,展示了一种新的抓取物体的方式,在仿生领域具有良好的应用前景。
  • Aliev A E, Oh J Y, Kozlov M E, et al. Giant-stroke, superelastic carbon nanotube aerogel muscles[J]. Science, 2009, 323(5921):1575-1578.
    Ha S M, Yuan W, Pei Q, et al. Interpenetrating polymer networks for high-performance electroelastomer artificial muscles[J]. Advanced Materials, 2006, 18(7):887-891.
    Deng J, Li J, Chen P, et al. Tunable photothermal actuators based on a pre-programmed aligned nanostructure.[J]. Journal of the American Chemical Society, 2016, 138:225-230.
    Bar-Cohen Y. Electroactive polymers as artificial muscles:a review[J]. Journal of Spacecraft and Rockets, 2002, 39(6):822-827.
    Madden J, Vandesteeg N A, Anquetil P A, et al. Artificial muscle technology:physical principles and naval prospects[J]. Ieee Journal of Oceanic Engineering, 2004, 29(3):706-728.
    Mirfakhrai T, Madden J, Baughman R H. Polymer artificial muscles[J]. Materials Today, 2007, 10(4):30-38.
    Zhou Z, Chen L, Liu C, et al. A curvature-controllable, convex-mirror actuator based on carbon nanotube film composites[J]. Carbon, 2016, 96:672-677.
    Martinez R V, Glavan A C, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage[J]. Advanced Functional Materials, 2014, 24(20):3003-3010.
    Baughman R H. Conducting polymer artificial muscles[J]. Synthetic Metals, 1996, 78(3):339-353.
    Brochu P, Pei Q B. Advances in dielectric elastomers for actuators and artificial muscles[J]. Macromolecular Rapid Communications, 2010, 31(1):10-36.
    Zhou Z, Li Q, Chen L, et al. A large-deformation phase transition electrothermal actuator based on carbon nanotube-elastomer composites[J]. Journal of Materials Chemistry B, 2016, 4(7):1228-1234.
    Pelrine R, Kornbluh R, Pei Q B, et al. High-speed electrically actuated elastomers with strain greater than 100%[J]. Science, 2000, 287(5454):836-839.
    Pei Z Q, Yang Y, Chen Q M, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds[J]. Nature Materials, 2014, 13(1):36-41.
    Pelrine R, Kornbluh R, Kofod G. High-strain actuator materials based on dielectric elastomers[J]. Advanced Materials, 2000, 12(16):1223-1225.
    Liu S, Liu Y, Cebeci H, et al. High electromechanical response of ionic polymer actuators with controlled-morphology aligned carbon nanotube/nafion nanocomposite electrodes[J]. Advanced Functional Materials, 2010, 20(19):3266-3271.
    Wu G, Li G H, Lan T, et al. An interface nanostructured array guided high performance electrochemical actuator[J]. Journal of Materials Chemistry A, 2014, 2(40):16836-16841.
    Chen L Z, Liu C H, Hu C H, et al. Electrothermal actuation based on carbon nanotube network in silicone elastomer[J]. Applied Physics Letters, 2008, 92(26310426).
    Hu Y, Lan T, Wu G, et al. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application[J]. Nanoscale, 2014, 6(21):12703-12709.
    Zeng Z, Jin H, Zhang L, et al. Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites[J]. Carbon, 2015, 84(0):327-334.
    Ebbesen T W, Lezec H J, Hiura H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586):54-56.
    FAN Zhuang-jun, WANG Yao, LUO Guo-hua, et al. The synergetic effect of carbon nanotubes and carbon black in a rubber system[J]. New Carbon Materials, 2008, 23(2):149-153. (范壮军, 王垚, 罗国华, 等. 碳纳米管和炭黑在橡胶体系增强的协同效应[J]. 新型炭材料, 2008, 23(2):149-153.)
    DAI Jian-feng, ZHANG Chao, WANG Qing, et al. Preparation and characterization of polymethylmethacrylate/aligned SWCNT composites with by repeated stretching[J]. New Carbon Materials, 2008, 23(3):201-204. (戴剑锋, 张超, 王青, 等. 反复拉伸法制备单壁碳纳米管定向排列的SWCNT/PMMA复合材料[J]. 新型炭材料, 2008, 23(3):201-204.)
    Hu Y, Chen W. Externally induced thermal actuation of polymer nanocomposites[J]. Macromolecular Chemistry and Physics, 2011, 212(10):992-998.
    Seo D K, Kang T J, Kim D W, et al. Twistable and bendable actuator:a cnt/polymer sandwich structure driven by thermal gradient[J]. Nanotechnology, 2012, 23(0755017).
    Hu Y, Lan T, Wu G, et al. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application[J]. Nanoscale, 2014, 6(21):12703-12709.
    Xu B, Jiang H Y, Li H J, et al. High strength nanocomposite hydrogel bilayer with bidirectional bending and shape switching behaviors for soft actuators[J]. RSC Advances, 2015, 5(17):13167-13170.
    Chen L, Liu C, Liu K, et al. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites[J]. ACS Nano, 2011, 5(3):1588-1593.
    Chen L, Weng M, Zhou Z, et al. Large-deformation curling actuators based on carbon nanotube composite:advanced-structure design and biomimetic application[J]. ACS Nano, 2015, 9(12):12189-12196.
    Li Q, Liu C, Lin Y, et al. Large-strain, multiform movements from designable electrothermal actuators based on large highly anisotropic carbon nanotube sheets[J]. ACS Nano, 2015, 9(1):409-418.
    Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties[J]. Science, 1999, 283(5401):512-514.
    Liu K, Sun Y H, Chen L, et al. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties[J]. Nano Letters, 2008, 8(2):700-705.
    QIU Long-bin, SUN Xue-mei, YANG Zhi-bin, et al. Preparation and application of aligned carbon nanotube/polymer composite material. Acta Chimica Sinica, 2012, 70(14):1523-1532. (丘龙斌, 孙雪梅, 仰志斌, 等. 取向碳纳米管/高分子新型复合材料的制备及应用[J]. 化学学报, 2012, 70(14):1523-1532.)
    Jiang K L, Li Q Q, Fan S S. Nanotechnology:spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications[J]. Nature, 2002, 419(6909):801.
    Jiang K, Wang J, Li Q, et al. Superaligned carbon nanotube arrays, films, and yarns:a road to applications[J]. Advanced Materials, 2011, 23(9):1154-1161.
  • 加载中
图(1)
计量
  • 文章访问数:  343
  • HTML全文浏览量:  86
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-28
  • 录用日期:  2017-11-13
  • 修回日期:  2017-10-09
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回