留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热解自活化法制备生物质基微孔型活性炭

孙康 冷昌宇 蒋剑春 卜权 林冠峰 卢辛成 朱光真

孙康, 冷昌宇, 蒋剑春, 卜权, 林冠峰, 卢辛成, 朱光真. 热解自活化法制备生物质基微孔型活性炭. 新型炭材料, 2017, 32(5): 451-459. doi: 10.1016/S1872-5805(17)60134-3
引用本文: 孙康, 冷昌宇, 蒋剑春, 卜权, 林冠峰, 卢辛成, 朱光真. 热解自活化法制备生物质基微孔型活性炭. 新型炭材料, 2017, 32(5): 451-459. doi: 10.1016/S1872-5805(17)60134-3
SUN Kang, LENG Chang-yu, JIANG Jian-chun, BU Quan, LIN Guan-feng, LU Xin-cheng, ZHU Guang-zhen. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Mater., 2017, 32(5): 451-459. doi: 10.1016/S1872-5805(17)60134-3
Citation: SUN Kang, LENG Chang-yu, JIANG Jian-chun, BU Quan, LIN Guan-feng, LU Xin-cheng, ZHU Guang-zhen. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance. New Carbon Mater., 2017, 32(5): 451-459. doi: 10.1016/S1872-5805(17)60134-3

热解自活化法制备生物质基微孔型活性炭

doi: 10.1016/S1872-5805(17)60134-3
基金项目: 林业公益性行业专项(201404610);国家自然基金(31400510).
详细信息
    作者简介:

    孙康,博士,副研究员.E-mail:sunkang0226@163.com

    通讯作者:

    蒋剑春,研究员.E-mail:bio-energy@163.com

  • 中图分类号: TQ127.1+1

Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance

Funds: State Forestry Public Benefit Research Sector (201404610); Natural Science Foundation of China (31400510).
  • 摘要: 提出热解自活化制备生物质基活性炭的新方法,制备过程不添加任何活化剂。将生物质原料置于可密闭反应器,在高温高压条件下进行热解自活化反应。结果表明,椰子壳是热解自活化制备微孔型活性炭的最佳原料,选择活化温度900℃并保持6 h,制备出了具有网络状发达微孔结构的活性炭,微孔率高达87.8%,比表面积1 194.4 m2/g,总孔容积0.528 cm3/g,碘吸附值1 280 mg/g,亚甲基蓝吸附值315 mg/g。同时,作为电化学储能电极材料,比电容可达258 F/g,而且阻抗小,3 000次充电循环后比电容仍能保持97.2%。热解自活化机理研究表明,生物质热解过程中产生的水蒸气、二氧化碳和反应器内的空气形成了良好的活化气氛,密闭反应器内形成的自生压力促进了水蒸气/二氧化碳与固体炭的活化反应速度,明显提高了微孔率。为了验证热解自活化法对其他生物质原料的适用性,还选择了杏核、核桃壳和松木屑作为原料进行热解自活化实验,并制得了高吸附力的活性炭样品。因此,热解自活化是一种无污染、清洁方便、产品得率高的新型活化方法,可产生良好的经济和环境效益。
  • Qiang L, Yin W, Jian Y, et al. Preparation and characterization of activated carbons from spirit lees by physical activation[J]. Carbon, 2012, 55(1):376.
    Jagtoyen M, Derbyshire F. Activated carbons from yellow and white oak by H3PO4 activation[J]. Carbon, 1998, 36(7-8):1085-1097.
    Caturla F, Molina-Sabio M, Rodríguez-Reinoso F. Preparation of activated carbon by chemical activation with ZnCl2[J]. Carbon, 1991, 29(7):999-1007.
    Elmouwahidi A, Zapata-Benabithe Z, Carrasco-Marín F, et al. Activated carbons from KOH-activation of argan (Argania spinosa) seed shells as supercapacitor electrodes[J]. Bioresource Technology, 2012, 111(1):185-190.
    Pol S V,Pol V G,Gedanken A.Reactions under autogenerated pressure at elevated temperature (RAPET) of various alkoxides:formation of metals/metal oxides-carbon core-hell structures[J]. Chemistry, 2004, 10(18):4467-473.
    Gershi H, Gedanken A, Keppner H, et al. One-step synthesis of prolate spheroidal-shaped carbon produced by the thermolysis of octene under its autogenerated pressure[J]. Carbon, 2011,49(4):1067-1074.
    Man S T, Antal M J. Preparation of activated carbons from macadamia nut shell and coconut shell by air activation[J]. Industrial & Engineering Chemistry Research, 1999, 38(11):4268-4276.
    Qu W H, Xu Y Y, Lu A H. Converting biowaste corncob residue into high value added porous carbon for supercapacitor electrodes[J]. Bioresource Technology, 2015, 189:285-291.
    Doyle M D, Loushine RJ, Agee K A, et al. Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors.[J]. Journal of Endodontics, 2013, 132(3):254-261.
    Nishihara H, Itoi H, Kogure T, et al. Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials[J]. Chemistry, 2009, 15(15):5355-5363.
    Ma G, Qian Y, Sun K. Nitrogen-doped porous carbon derived from biomass waste for high-performance supercapacitor[J]. Bioresource Technology, 2015, 197:137-142.
    Kötz R, Carlen M. Principles and applications of electrochemical capacitors[J]. Electrochimica Acta, 2000, 45(s 15-16):2483-2498.
    Fang B, Binder L. A modified activated carbon aerogel for high-energy storage in electric double layer capacitors[J]. Journal of Power Sources, 2006, 163(1):616-622.
    Zhu Y, Murali S, Cai W, S et al. Graphene and graphene oxide:synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35):3906-3924.
    Jiang W, Zhai S, Wei L. Nickel hydroxide-carbon nanotube nanocomposites as supercapacitor electrodes:crystallinity dependent performances[J]. Nanotechnology, 2015, 26(31).
    Yu H R, Cho S, Jung M J. Electrochemical and structural characteristics of activated carbon-based electrodes modified via phosphoric acid[J]. Microporous & Mesoporous Materials, 2013, 172(172):131-135.
    Redondo E, Carretero-González J, Goikolea E. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits[J]. Electrochimica Acta, 2015, 160:178-184.
    Qu D. Studies of the activated carbons used in double-layer supercapacitors[J]. Journal of Power Sources, 2002, 109(2):403-411.
    Chang J, Gao Z, Wang X. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes[J]. Electrochimica Acta, 2015, 157:290-298.
    Oh I, Kim M, Kim J. Deposition of Fe3O4 on oxidized activated carbon by hydrazine reducing method for high performance supercapacitor[J]. Microelectronics Reliability, 2015, 55(1):114-122.
    Sundaram E G, Natarajanb E. Department. Pyrolysis of coconut shell:an experimental investigation[J]. 2009, 6(2):33-39.
    Rodríguez-Reinoso F, Molina-Sabio M, González M T. The use of steam and CO2 as activating agents in the preparation of activated carbons[J]. Carbon, 1995, 33(1):15-23.
    Xing J, Xia S, Dong K. Preparation and characterization of activated carbon from acorn shell by physical activation with H2O-CO2 in two-step pretreatment[J]. Bioresource Technology, 2013, 136(4):163-168.
    Shim T, Yoo J, Ryu C. Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity[J]. Bioresource Technology, 2015, 197:85-90.
    RodríGuez-Valero M A, MartíNez-Escandell M, Molina-Sabio M. CO2 activation of olive stones carbonized under pressure[J]. Carbon, 2001, 39(2):320-323.
    Lahijani P, Zainal Z A, Mohamed A R. Microwave-enhanced CO2 gasification of oil palm shell char[J]. Bioresource Technology, 2014, 158(2):193-200.
    Roberts D G, Harris D J. Char gasification with O2, CO2, and H2O:Effects of pressure on intrinsic reaction kinetics[J]. Energy Fuels, 2000, 14(2):483-489.
    Seebauer V, Petek J, Staudinger G. Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis[J]. Fuel, 1997, 76(13):1277-1282.
    Jiang L, Yan J, Hao L, et al. High rate performance activated carbons prepared from ginkgo shells for electrochemical supercapacitors[J]. Carbon, 2013, 56(56):146-154.
    Sánchez-González J, Stoeckli F, Centeno T A. The role of the electric conductivity of carbons in the electrochemical capacitor performance[J]. Journal of Electroanalytical Chemistry, 2011, 657(657):176-180.
  • 加载中
图(1)
计量
  • 文章访问数:  597
  • HTML全文浏览量:  132
  • PDF下载量:  344
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-06
  • 录用日期:  2017-11-13
  • 修回日期:  2017-08-09
  • 刊出日期:  2017-10-28

目录

    /

    返回文章
    返回