留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SAPO-34模板法制备多级孔石墨烯笼用作双功能氧还原/氧析出电催化剂

钟玲 唐城 王斌 王浩帆 高上 王垚 张强

钟玲, 唐城, 王斌, 王浩帆, 高上, 王垚, 张强. SAPO-34模板法制备多级孔石墨烯笼用作双功能氧还原/氧析出电催化剂. 新型炭材料, 2017, 32(6): 509-516. doi: 10.1016/S1872-5805(17)60136-7
引用本文: 钟玲, 唐城, 王斌, 王浩帆, 高上, 王垚, 张强. SAPO-34模板法制备多级孔石墨烯笼用作双功能氧还原/氧析出电催化剂. 新型炭材料, 2017, 32(6): 509-516. doi: 10.1016/S1872-5805(17)60136-7
ZHONG Ling, TANG Cheng, WANG Bin, WANG Hao-fan, GAO Shang, WANG Yao, ZHANG Qiang. SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution. New Carbon Mater., 2017, 32(6): 509-516. doi: 10.1016/S1872-5805(17)60136-7
Citation: ZHONG Ling, TANG Cheng, WANG Bin, WANG Hao-fan, GAO Shang, WANG Yao, ZHANG Qiang. SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution. New Carbon Mater., 2017, 32(6): 509-516. doi: 10.1016/S1872-5805(17)60136-7

SAPO-34模板法制备多级孔石墨烯笼用作双功能氧还原/氧析出电催化剂

doi: 10.1016/S1872-5805(17)60136-7
基金项目: 国家重点研发计划(2016YFA0200101);国家自然科学基金(21776019);北京市科委项目(Z161100002116019);清华大学自主科研基金.
详细信息
    作者简介:

    钟玲.E-mail:ling-14@mails.tsinghua.edu.cn

    通讯作者:

    王垚.E-mail:wang_yao@mail.tsinghua.edu.cn;张强.E-mail:zhang-qiang@mails.tsinghua.edu.cn

  • 中图分类号: TB332

SAPO-34 templated growth of hierarchical porous graphene cages as electrocatalysts for both oxygen reduction and evolution

Funds: National Key Research and Development Program (2016YFA0200101);Natural Scientific Foundation of China (21422604);Beijing Municipal Commission of Science and Technology (Z161100002116019);Tsinghua University Initiative Scientific Research Program.
  • 摘要: 具有三维多级孔道结构的石墨烯材料可以作为氧还原反应、氧析出反应的电催化剂,体现出优异的反应活性。在合成石墨烯的众多方法中,化学气相沉积法(CVD)具有良好的应用前景,但可作为CVD法石墨烯沉积模板的材料十分有限。本文采用磷酸硅铝分子筛(SAPO-34)用作多级孔石墨烯的沉积模板制备石墨烯材料。所得石墨烯材料可完整保留SAPO-34分子筛的立方体颗粒结构,呈现为由具有微孔/介孔结构的超薄石墨烯层围成的微米尺度空心立方体结构。引入氨气煅烧,可以得到原子分数6.84%的氮掺杂量。由于具有独特的孔结构,丰富的缺陷位点以及良好的杂原子掺杂,制得的石墨烯材料体现出高效的双功能氧还原与氧析出反应催化活性。
  • Zhu Y P, Guo C X, Zheng Y, et al. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes[J]. Accounts of Chemical Research, 2017, 50:915-923.
    Wang S, Jiang S P. Prospects of fuel cell technologies[J]. National Science Review, 2017, 4:163-166.
    Zhang X Q, Cheng X B, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage:A review[J]. Journal of Energy Chemistry, 2016, 25:967-984.
    Tu Y C, Deng D H, Bao X H. Nanocarbons and their hybrids as catalysts for non-aqueous lithium-oxygen batteries[J]. Journal of Energy Chemistry, 2016, 25:957-966.
    Yang H C, Liang J, Wang Z X, et al. Applications of porous carbon materials in the electrocatalysis of the oxygen reduction reaction[J]. New Carbon Materials, 2016, 31:243-263.
    Zhu Q L, Xu Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications[J]. Chem, 2016, 1:220-245.
    Yuan L Z, Yan Z, Jiang L H, et al. Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Journal of Energy Chemistry, 2016, 25:805-810.
    Li B-Q, Tang C, Wang H-F, et al. An aqueous preoxidation method for monolithic perovskite electrocatalysts with enhanced water oxidation performance[J]. Science Advances, 2016, 2:e1600495.
    Li B-Q, Zhang S-Y, Tang C, et al. Anionic regulated nife (oxy)sulfide electrocatalysts for water oxidation[J]. Small, 2017, 13:1700610.
    Wang H-F, Tang C, Zhang Q. Template growth of nitrogen-doped mesoporous graphene on metal oxides and its use as a metal-free bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Catalysis Today, 2017, 2018, 301:25-31.
    Tang C, Zhang Q. Nanocarbon for oxygen reduction electrocatalysis:Dopants, edges, and defects[J]. Advanced Materials, 2017, 29:1604103.
    Wang L P, Jia W S, Liu X F, et al. Sulphur-doped ordered mesoporous carbon with enhanced electrocatalytic activity for the oxygen reduction reaction[J]. Journal of Energy Chemistry, 2016, 25:566-570.
    Seredych M, Laszlo K, Rodriguez-Castellon E, et al. S-doped carbon aerogels/Go composites as oxygen reduction catalysts[J]. Journal of Energy Chemistry, 2016, 25:236-245.
    Tang C, Wang H S, Wang H F, et al. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity[J]. Advanced Materials, 2015, 27:4516-4522.
    Tang C, Wang H F, Zhu X L, et al. Advances in hybrid electrocatalysts for oxygen evolution reactions:Rational integration of nife layered double hydroxides and nanocarbon[J]. Particle & Particle Systems Characterization, 2016, 33:473-486.
    Tang C, Titirici M-M, Zhang Q. A review of nanocarbons in energy electrocatalysis:Multifunctional substrates and highly active sites[J]. Journal of Energy Chemistry, 2017, 26:1077-1093.
    Wang J, Wu Z X, Han L L, et al. Rational design of three-dimensional nitrogen and phosphorus co-doped graphene nanoribbons/cnts composite for the oxygen reduction[J]. Chinese Chemical Letters, 2016, 27:597-601.
    Guo M Q, Huang J Q, Kong X Y, et al. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Materials, 2016, 31:352-362.
    Guo S J, Yang Y M, Liu N Y, et al. One-step synthesis of cobalt, nitrogen-codoped carbon as nonprecious bifunctional electrocatalyst for oxygen reduction and evolution reactions[J]. Science Bulletin, 2016, 61:68-77.
    Li R N, Zhang D T, Zhou Y Y, et al. Synthesis and characterization of a novel binuclear iron phthalocyanine/reduced graphene oxide nanocomposite for non-precious electrocatalyst for oxygen reduction[J]. Science China-Chemistry, 2016, 59:746-751.
    Li Y R, Chen J, Huang L, et al. Highly compressible macroporous graphene monoliths via an improved hydrothermal process[J]. Advanced Materials, 2014, 26:4789-4793.
    Chen Z P, Ren W C, Gao L B, et al. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nature Materials, 2011, 10:424-428.
    Tang C, Li B-Q, Zhang Q, et al. CaO-templated growth of hierarchical porous graphene for high-power lithium-sulfur battery applications[J]. Advanced Functional Materials, 2016, 26:577-585.
    Zhao M-Q, Zhang Q, Huang J-Q, et al. Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries[J]. Nature Communications, 2014, 5:3410.
    Lv Y, Fang Y, Wu Z, et al. In-situ confined growth of monodisperse PT nanoparticle@graphene nanobox composites as electrocatalytic nanoreactors[J]. Small, 2015, 11:1003-1010.
    Cui Y, Zhang Q, He J, et al. Pore-structure-mediated hierarchical SAPO-34:Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins[J]. Particuology, 2013, 11:468-474.
    Sun Q, Xie Z, Yu J. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion[J]. National Science Review, 2017:doi: 10.1093/nsr/nwx103.
    Shi J L, Tang C, Peng H J, et al. 3D mesoporous graphene:CVD self-assembly on porous oxide templates and applications in high-stable Li-S batteries[J]. Small, 2015, 11:5243-5252.
    Tian G L, Zhao M Q, Yu D S, et al. Nitrogen-doped graphene/carbon nanotube hybrids:In situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction[J]. Small, 2014, 10:2251-2259.
    Tang H L, Cai S C, Xie S L, et al. Metal-organic-framework-derived dual metal-and nitrogen-doped carbon as efficient and robust oxygen reduction reaction catalysts for microbial fuel cells[J]. Advanced Science, 2016, 3:1500265.
    Hou T Z, Chen X, Peng H J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016, 12:3283-3291.
    Hou T Z, Xu W T, Chen X, et al. Lithium bond chemistry in lithium-sulfur batteries[J]. Angewandte Chemie-international Edition, 2017, 56:8178-8182.
    Tian G L, Zhang Q, Zhang B S, et al. Toward full exposure of "active sites":Nanocarbon electrocatalyst with surface enriched nitrogen for superior oxygen reduction and evolution reactivity[J]. Advanced Functional Materials, 2014, 24:5956-5961.
    Su F Y, Xie L J, Sun G H, et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials, 2016, 31:363-377.
    Pan T, Liu H Y, Ren G Y, et al. Metal-free porous nitrogen-doped carbon nanotubes for enhanced oxygen reduction and evolution reactions[J]. Science Bulletin, 2016, 61:889-896.
    Yan D, Li Y, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J]. Advanced Materials, 2017, 29:1606459.
    Wei L, Karahan H E, Zhai S L, et al. Microbe-derived carbon materials for electrical energy storage and conversion[J]. Journal of Energy Chemistry, 2016, 25:191-198.
    Jiang Y, Yang L, Sun T, et al. Significant contribution of intrinsic carbon defects to oxygen reduction activity[J]. ACS Catalysis, 2015, 5:6707-6712.
    Tang C, Wang H-F, Chen X, et al. Topological defects in metal-free nanocarbon for oxygen electrocatalysis[J]. Advanced Materials, 2016, 28:6845-6851.
    Jia Y, Zhang L Z, Du A J, et al. Defect graphene as a trifunctional catalyst for electrochemical reactions[J]. Advanced Materials, 2016, 28:9532-9538.
    Li M T, Zhang L P, Xu Q, et al. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions:Theoretical considerations[J]. Journal of Catalysis, 2014, 314:66-72.
  • 加载中
图(1)
计量
  • 文章访问数:  389
  • HTML全文浏览量:  78
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-10
  • 录用日期:  2017-12-28
  • 修回日期:  2017-12-09
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回