留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以还原氧化石墨烯网络/金线构建高性能柔性线型电化学电容器

常云珍 韩高义 肖尧明 周海涵 李妙鱼 符冬营 周雯

常云珍, 韩高义, 肖尧明, 周海涵, 李妙鱼, 符冬营, 周雯. 以还原氧化石墨烯网络/金线构建高性能柔性线型电化学电容器. 新型炭材料, 2017, 32(6): 581-591. doi: 10.1016/S1872-5805(17)60139-2
引用本文: 常云珍, 韩高义, 肖尧明, 周海涵, 李妙鱼, 符冬营, 周雯. 以还原氧化石墨烯网络/金线构建高性能柔性线型电化学电容器. 新型炭材料, 2017, 32(6): 581-591. doi: 10.1016/S1872-5805(17)60139-2
CHANG Yun-zhen, HAN Gao-yi, XIAO Yao-ming, ZHOU Hai-han, LI Miao-yu, FU Dong-ying, ZHOU Wen. High-performance flexible wire-shaped electrochemical capacitors based on gold wire@reduced graphene oxide. New Carbon Mater., 2017, 32(6): 581-591. doi: 10.1016/S1872-5805(17)60139-2
Citation: CHANG Yun-zhen, HAN Gao-yi, XIAO Yao-ming, ZHOU Hai-han, LI Miao-yu, FU Dong-ying, ZHOU Wen. High-performance flexible wire-shaped electrochemical capacitors based on gold wire@reduced graphene oxide. New Carbon Mater., 2017, 32(6): 581-591. doi: 10.1016/S1872-5805(17)60139-2

以还原氧化石墨烯网络/金线构建高性能柔性线型电化学电容器

doi: 10.1016/S1872-5805(17)60139-2
基金项目: 国家自然科学基金(21574076,21501113,U1510121,61504076);山西省自然科学基金(2014011016-1,2015021079).
详细信息
    作者简介:

    常云珍,讲师.E-mail:changyunzhen@sxu.edu.cn

    通讯作者:

    韩高义,博士生导师,教授.E-mail:han_gaoyis@sxu.edu.cn

  • 中图分类号: TQ127.1+2

High-performance flexible wire-shaped electrochemical capacitors based on gold wire@reduced graphene oxide

Funds: National Natural Science Foundation of China (21574076,21501113,U1510121,61504076);Science Foundation of Shanxi province (2014011016-1,2015021079).
  • 摘要: 将金丝插入盛有氧化石墨烯和抗坏血酸混合物的毛细管中,密封条件下于30℃反应48小时制得具有三维网络结构的还原氧化石墨烯/金线(rGON/WAu)柔性复合纤维。通过扫描电子显微镜观测,发现rGON/WAu复合纤维由三维网络结构的还原氧化石墨烯包裹在金丝周围形成。用电化学测试方法详细研究了rGON/WAu复合纤维的电容性能,结果表明:当扫描速度为1 mV s-1时,纤维的长度和质量比电容分别可达5.47 mF cm-1和176.7 F g-1。以磷酸/聚乙烯醇为凝胶电解质,rGON/WAu为电极组装的对称全固态柔性电化学电容器的长度、面积和体积比电容分别可达到2.06 mF cm-1、6.87 mF cm-2和411.9 mF cm-3,其功率密度为0.017 mW cm-2时,能量密度可达9.48×10-4 mWh cm-2。此外,以rGON/WAu为电极的柔性超级电容器还具有很好的稳定性和柔性,三个柔性电容器串联充电后可以点亮电压阈值为2.5 V的发光二极管。
  • Wu M B, Li L Y, Liu J, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5):471-475.
    Simon P, Gogotsi Y. Mateials for electrochemical capacitors[J]. Nature Materials, 2008, 7:845-854.
    Brownson D A C, Kampouris D K, Banks C E. An overview of graphene in energy production and storage application[J]. Journal of Power Sources, 2011, 196:4873-4885.
    He Y M, Chen W J, Gao C T, et al. An overview of carbon materials for flexible electrochemical capacitors[J]. Nanoscale, 2013, 5:8799-8820.
    Zheng B, Chen T W, Xiao F N, et al. KOH-activated nitrogen-doped graphene by means of thermal annealing for supercapacitor[J]. Journal of Solid State Electrochemistry, 2013, 17:1809-1814.
    Huang X D, Sun B, Chen S Q, et al. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors[J]. Chemistry-An Asina Journal, 2014, 9:206-211.
    Liu W J, Liu N S, Shi Y L, et al. A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer[J]. Journal of Materials Chemistry A, 2015, 3:13461-13467.
    Yadegari H, Heli H, Jabbari A. Graphene/poly(ortho-phenylenediamine) nanocomposite material for electrochemical supercapacitor[J]. Journal of Solid State Electrochemistry, 2013, 17:2203-2212.
    Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9:555-562.
    Le V T, Kim H, Ghosh A, et al. Coaxial fibre supercapacitor using all-carbon material electrodes[J]. ACS Nano, 2013, 7:5940-5947.
    Hu S, Rajesh R, Yu X. Flexible solid-state paper based carbon nanotube supercapacitor[J]. Applied Physics Letters, 2012, 100:104103(1-4).
    Li C, Zhang X, Wang K, et al. Three dimensional graphene networks for supercapacitor electrode materials[J]. New Carbon Materials, 2015, 30(3):193-206.
    Wang J Z, Wang L Q, Chen M M, et al. Nanoporous carbons from oxidized green needle coke for use in high performance supercapacitors[J]. New Carbon Materials, 2015, 30(2):141-149.
    Wu H, Wang X Y, Jiang L L, et al. The effects of electrolyte on the supercapacitive performance of activated calcium carbide-derived carbon[J]. Journal of Power Sources, 2013, 226:202-209.
    Bolotina K I, Sikesb K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communtication, 2008, 146:351-355.
    Lee C, Wei XD, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, Science 321:385-388.
    Si Y C, Samulski E T. Exfoliated graphene separated by platinum nanoparticles[J]. Chemistry of Materials, 2008, 20:6792-6797.
    Rath T, Paban Kundu P. Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors[J]. 2015, 5:26666-26674.
    Wang Y Z, Wang Y, Han F, et al. The effect of heat treatment on the electrical conductivity of highly conducting graphene films[J]. New Carbon Materials, 2012, 27(4):266-270.
    Xu Z, Gao C. Graphene chiral liquid crystals and macroscopic assembled fibres[J]. Nature Communications, 2011, 2:571.
    Xu Z, Sun H Y, Zhao X L,et al. Ultrastrong fibers assembled from giant graphene oxide sheets[J]. Advanced Materials, 2013, 25:188-193.
    Dong Z L, Jiang C C, Cheng H H, et al. Facile fabrication of light, flexible and multifunctional graphene fibers[J]. Advanced Materials, 2012, 24:1856-1861.
    Chang Y Z, Han G Y, Fu D Y, et al. Larger-scale fabrication of N-doped graphene-fiber mats used in high-performance energy storage[J]. Journal of Power Sources, 2014, 252:113-121.
    Li X M, Zhao T S, Chen Q, et al. Flexible all solid-state supercapacitors based on chemical vapor deposition derived graphene fibers[J]. Physical Chemistry Chemical Physics, 2013, 15:17752-17757.
    Zhao X L, Zheng B N, Huang T Q, et al. Graphene-based single fiber supercapacitor with a coaxial structure[J]. Nanoscal, 2015, 7:9399-9404.
    Hu Y, Cheng H H, Zhao F, et al. All-in-one graphene fiber supercapacitor[J]. Nanoscale, 2014, 6, 66448-6451.
    Kou L, Huang T Q, Zheng B N, et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics[J]. Nature Communications, 2014, 5:3754.
    Meng Y N, Zhao Y, Hu C G, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibrirm supercapacitors and wearable electronic textiles[J]. Advanced Materials, 2013, 25:2326-2331.
    Li Y R, Sheng K X, Yuan W J, et al. A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide[J]. Chemical Communications, 2013, 49:291-293.
    Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid[J]. Chemical Communications, 2010, 46:1112-1114.
    Chang Y Z, Han G Y, Yuan J P, et al. Using hydroxylamine as a reducer to prepare N-doped graphenehydrogels used in high-performance energy storage[J]. Journal of Power Sources, 2013, 238:492-500.
    Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage[J]. Nature Nanotechnology, 2014, 9:555-562.
    Huang Y, Hu H, Huang Y, et al. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles[J]. ACS Nano, 2015, 9:4766-4775.
    Li Y Y, Li Z S, Shen P K. Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors[J]. Advanced Materials, 2013, 25:2474-2480.
    Zhang L, Shi G Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. The Journal of Physical Chemistry C, 2011, 115:17206-17212.
    Aboutalebi S H, Chidembo A T, Salari M, et al. Comparison of GO, GO/MWCNTs composite and MWCNTs as potential electrode materials for supercapacitors[J]. Energy & Environmental Science, 2011, 4:1855-1865.
    Pech D, Brunet M, Taberna P, et al. Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor[J]. Journal of Power Sources, 2010, 195:1266-1269.
    McDonough J R, Choi J W, Yang Y, et al. Carbon nanofiber supercapacitors with large areal capacitances[J]. Applied Physics Letters, 2009, 95:243109-243111.
    Bae J, Song M K, Park Y J, et al. Fiber surpercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angewandte Chemie International Edition, 2011, 50:1683-1687.
    Chen T, Qiu L B, Yang Z B, et al. An integrated "energy wire" for both photoelectric conversion and energy storage[J]. Angewandte Chemie International Edition, 2012, 51:11977-11980.
  • 加载中
图(1)
计量
  • 文章访问数:  331
  • HTML全文浏览量:  91
  • PDF下载量:  366
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-15
  • 录用日期:  2017-12-28
  • 修回日期:  2017-12-10
  • 刊出日期:  2017-12-28

目录

    /

    返回文章
    返回