留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳载金属单原子催化剂

李海 章海霞 闫晓丽 许并社 郭俊杰

李海, 章海霞, 闫晓丽, 许并社, 郭俊杰. 碳载金属单原子催化剂. 新型炭材料, 2018, 33(1): 1-11. doi: 10.1016/S1872-5805(18)60322-1
引用本文: 李海, 章海霞, 闫晓丽, 许并社, 郭俊杰. 碳载金属单原子催化剂. 新型炭材料, 2018, 33(1): 1-11. doi: 10.1016/S1872-5805(18)60322-1
LI Hai, ZHANG Hai-xia, YAN Xiao-li, XU Bing-she, GUO Jun-jie. Carbon-supported metal single atom catalysts. New Carbon Mater., 2018, 33(1): 1-11. doi: 10.1016/S1872-5805(18)60322-1
Citation: LI Hai, ZHANG Hai-xia, YAN Xiao-li, XU Bing-she, GUO Jun-jie. Carbon-supported metal single atom catalysts. New Carbon Mater., 2018, 33(1): 1-11. doi: 10.1016/S1872-5805(18)60322-1

碳载金属单原子催化剂

doi: 10.1016/S1872-5805(18)60322-1
基金项目: 国家自然科学基金(51501124,51602212);山西省基础研究项目(2015021071,2015011037);人社部和山西省留学人员科技活动项目择优资助.
详细信息
    作者简介:

    李海,硕士研究生.E-mail:791345560@qq.com

    通讯作者:

    郭俊杰,教授,博士生导师.E-mail:guojunjie@tyut.edu.cn;闫晓丽,讲师,硕士生导师.E-mail:yanxiaoli@tyut.edu.cn

  • 中图分类号: TB333

Carbon-supported metal single atom catalysts

Funds: National Natural Science Foundation of China (51501124, 51602212);Basic Research Project in Shanxi Province (2015021071, 2015011037);Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in MOHRSS and Shanxi Province.
  • 摘要: 金属单原子催化剂由于在氧还原反应和CO氧化反应等关键催化反应中表现出优异的性能而备受关注。构建高分散性金属单原子催化剂体系有助于从原子尺度认识催化反应,发现催化新机理,进而推进新型工业催化剂的开发。最新研究表明,利用炭材料替代金属或金属氧化物载体,可以有效提高金属单原子催化剂的催化性能,石墨烯独特的结构和电子特性使其成为单原子催化剂的优良载体。然而,对于金属单原子催化剂和碳载体之间的钉扎机理以及金属单一活性位点的作用机理还有待进一步阐明。本文总结了炭材料作为金属单原子载体的多重作用,特别是石墨烯晶格缺陷对金属单原子的钉扎机制;同时,对改进实验和理论研究方法,以及扩展应用范围和实现工业化应用提出了建议与展望。
  • Yang X F, Wang A Q, Qiao B T, et al. Single-atom catalysts:A new frontier in heterogeneous catalysis[J]. Accounts of Chemical Research, 2012, 46(8):1740-1748.
    Turner M, Golovko V B, Vaughan O P, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters[J]. Nature, 2008, 454(7207):981-983.
    Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science, 2010, 328(5975):224-228.
    Qiao B T, Wang A Q, Li L, et al. Ferric oxide-supported Pt subnano clusters for preferential oxidation of CO in H2-rich gas at room temperature[J]. ACS Catalysis, 2014, 4(7):2113-2117.
    Qiao B T, Wang A Q, Yang X F, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nature Chemistry, 2011, 3(8):634-641.
    Poh C K, Lim S H, Lin J Y, et al. Tungsten carbide supports for single-atom platinum-based fuel-cell catalysts:First-principles study on the metal-support interactions and O2 dissociation on WxC low-index surfaces[J]. The Journal of Physical Chemistry C, 2014, 118(25):13525-13538.
    Liu P X, Zhao Y, Qin R X, et al. Photochemical route for synthesizing atomically dispersed palladium catalysts[J]. Science, 2016, 352(6287):797-801.
    Tang L, Wang Y, Li Y, et al. Preparation, structure, and electrochemical properties of reduced graphene sheet films[J]. Advanced Functional Materials, 2009, 19(17):2782-2789.
    Uzun A, Ortalan V, Hao Y, et al. Nanoclusters of gold on a high-area support:Almost uniform nanoclusters imaged by scanning transmission electron microscopy[J]. ACS Nano, 2009, 3(11):3691-3695.
    Uzun A, Ortalan V, Browning N D, et al. A site-isolated mononuclear iridium complex catalyst supported on MgO:Characterization by spectroscopy and aberration-corrected scanning transmission electron microscopy[J]. Journal of Catalysis, 2010, 269(2):318-328.
    Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073):1209-1212.
    Lucci F R, Liu J, Marcinkowski M D, et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nature Communications, 2015, 6:8550.
    Zhang L L, Wang A Q, Miller J T, et al. Efficient and durable Au alloyed Pd single-atom catalyst for the ullmann reaction of aryl chlorides in water[J]. ACS Catalysis, 2014, 4(5):1546-1553.
    Zhang H J, Kawashima K, Okumurac M, et al. Colloidal Au single-atom catalysts embedded on Pd nanoclusters[J]. Journal of Materials Chemistry A, 2014, 2(33):13498-13508.
    Ge J, He D S, Chen W, et al. Atomically dispersed Ru on ultrathin Pd nanoribbons[J]. Journal of the American Chemical Society, 2016.
    Wang Z T, Matthew T D, Andrew J T, et al. Preparation, structure, and surface chemistry of Ni-Au single atom alloys[J]. The Journal of Physical Chemistry C, 2016, 120(25):13574-13580.
    Lin J, Qiao B T, Liu J Y, et al. Design of a highly active Ir/Fe(OH)x catalyst:Versatile application of Pt-group metals for the preferential oxidation of carbon monoxide[J]. Angewandte Chemie, 2012, 51(12):2920-2924.
    Yuan Z, Li X N, and He S G. CO oxidation promoted by gold atoms loosely attached in AuFeO3-cluster anions[J]. The Journal of Physical Chemistry Letters, 2014, 5(9):1585-1590.
    Hu P P, Amghouz Z, Huang Z W, et al. Surface-confined atomic silver centers catalyzing formaldehyde oxidation[J]. Environmental Science & Technology, 2015, 49(4):2384-2390.
    Zhao Y X, Li Z Y, Yuan Z, et al. Thermal methane conversion to formaldehyde promoted by single platinum atoms in PtAl2O4-cluster anions[J]. Angewandte Chemie, 2014, 53(36):9482-9486.
    Chen M S, Goodman D W. The structure of catalytically active gold on titania[J]. Science, 2004, 306(5694):252-255.
    Matthey D, Wang J G, Wendt S, et al. Enhanced bonding of gold nanoparticles on oxidized TiO2(110)[J]. Science, 2007, 315(5819):1692-1696.
    Kwak J H, Hu J Z, Mei D H, et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on g-Al2O3[J]. Science, 2009, 325(5948):1670-1673.
    Lu J, Aydin C, Browning N D, et al. Imaging isolated gold atom catalytic sites in zeolite NaY[J]. Angewandte Chemie, 2012, 51(24):5842-5846.
    Kistler J, Chotigkrai N, Xu P H, et al. A single-site platinum CO oxidation catalyst in zeolite KLTL:Microscopic and spectroscopic determination of the locations of the platinum atoms[J]. Angewandte Chemie, 2014, 53(34):8904-8907.
    Kamai R, Kamiya K, Hashimoto K, et al. Oxygen-tolerant electrodes with platinum-loaded covalent triazine frameworks for the hydrogen oxidation reaction[J]. Angewandte Chemie, 2016, 55(42):13184-13188.
    Kamiya K, Kamai R, Hashimoto K, et al. Platinum-modified covalent triazine frameworks hybridized with carbon nanoparticles as methanol-tolerant oxygen reduction electrocatalysts[J]. Nature Communications, 2014, 5:5040.
    Pei G X, Liu X Y, Wang A Q, et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene[J]. ACS Catalysis, 2015, 5(6):3717-3725.
    Huang W X, Zhang S R, Tang Y, et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate[J]. Angewandte Chemie, 2016, 55:1-6.
    Zhang H B, Jing W, Dong J C, et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal-organic framework[J]. Angewandte Chemie, 2016, 55(46):14310-14314.
    Kyriakou G, Boucher M B, Jewell A D, et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations[J]. Science, 2012, 335(6073):1209-1212.
    Wei H S, Liu X Y, Wang A Q, et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes[J]. Nature Communications, 2014, 5:5634.
    Shi Y T, Zhao C Y, Wei H S, et al. Single-atom catalysis in mesoporous photovoltaics:the principle of utility maximization[J]. Advanced Materials, 2014, 26(48):8147-8153.
    Lin J, Wang A Q, Qiao B T, et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction[J]. Journal of the American Chemical Society, 2013, 135(41):15314-15317.
    He Q, Freakley S J, Edwards J K, et al. Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation[J]. Nature Communications, 2016, 7:12905.
    Moses-DeBusk M, Yoon M, Allard L F, et al. CO oxidation on supported single Pt atoms:experimental and ab initio density functional studies of CO interaction with Pt atom on theta-Al2O3(010) surface[J]. Journal of the American Chemical Society, 2013, 135(34):12634-12645.
    Ghosh T K, Nair N N. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation:mechanism, effects of hydration, oxidation state, and cluster size[J]. ChemCatChem, 2013, 5(7):1811-1821.
    Li Z Y, Yuan Z, Li X N, et al. CO oxidation catalyzed by single gold atoms supported on aluminum oxide clusters[J]. Journal of the American Chemical Society, 2014, 136(40):14307-14313.
    Song W Y, Hensen E J M. Structure sensitivity in CO oxidation by a single Au atom supported on ceria[J]. The Journal of Physical Chemistry C, 2013, 117(15):7721-7726.
    Qiao B T, Liu J X, Wang Y G, et al. Highly efficient catalysis of preferential oxidation of CO in H2-rich stream by gold single-atom catalysts[J]. ACS Catalysis, 2015, 5(11):6249-6254.
    Guo L W, Du P P, Fu X P, et al. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation[J]. Nature Communications, 2016, 7:13481.
    Gao D W, Zhang X, Yang Y, et al. Supported single Au(Ⅲ) ion catalysts for high performance in the reactions of 1,3-dicarbonyls with alcohols[J]. Nano Research, 2016, 9(4):985-995.
    Jones J, Xiong H F, DeLaRiva A T, et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping[J]. Science, 2016, 353(6295):150-154.
    Wang L, Zhang S R, Zhu Y, et al. Catalysis and in situ studies of Rh1/Co3O4 nanorods in reduction of NO with H2[J]. ACS Catalysis, 2013, 3(5):1011-1019.
    Li X N, Yuan Z, and He S G. CO oxidation promoted by gold atoms supported on titanium oxide cluster anions[J]. Journal of the American Chemical Society, 2014, 136(9):3617-3623.
    Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009, 458(7239):746-749.
    Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-191.
    Guo J J, Wang X M, Yao Y L, et al. Structure of nanocarbons prepared by arc discharge in water[J]. Materials Chemistry and Physics, 2007, 105(2-3):175-178.
    Guo J J, Morris J R, Ihm Y, et al. Topological defects:Origin of nanopores and enhanced adsorption performance in nanoporous carbon[J]. Small, 2012, 8(21):3283-3288.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Scheuermann G M, Rumi L, Steurer P, et al. Palladium nanoparticles on graphite oxide and its functionalized graphene derivatives as highly active catalysts for the suzuki-miyaura coupling reaction[J]. Journal of the American Chemical Society, 2009, 131(23):8262-8270
    Yin H J, Tang H J, Wang D, et al. Facile synthesis of surfactant-free Au cluster/graphene hybrids for high-performance oxygen reduction reaction[J]. ACS Nano, 2012, 6(9):8288-8297.
    Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catal Sci Technol, 2012, 2(1):54-75.
    Sun S, Zhang G, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.
    Sun S H, Zhang G X, Gauquelin N, et al. Single-atom catalysis using Pt/graphene achieved through atomic layer deposition[J]. Scientific Reports, 2013, 3.
    Yan H, Cheng H, Yi H, et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition:remarkable performance in selective hydrogenation of 1,3-butadiene[J]. Journal of the American Chemical Society, 2015, 137(33):10484-10487.
    Fei H L, Dong J C, Arellano-Jime M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation[J]. Nature Communications, 2015, 6:8668.
    Yin P Q, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J]. Angewandte Chemie, 2016, 55(36):10800-10805.
    Liu W G, Zhang L L, Yan W S, et al. Single-atom dispersed Co-N-C catalyst:Structure identification and performance for hydrogenative coupling of nitroarenes[J]. Chem. Sci., 2016, 7(9):5758-5764.
    Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9):937-942.
    Deng D H, Chen X Q, Yu L, et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature[J]. Science Advances, 2015, 1(11):1-9.
    Qiu H J, Ito Y, Cong W T, et al. Nanoporous graphene with single-atom nickel dopants:An efficient and stable catalyst for electrochemical hydrogen production[J]. Angewandte Chemie, 2015, 54(47):14031-14035.
    Zhang X F, Guo J J, Guan P F, et al. Catalytically active single-atom niobium in graphitic layers[J]. Nature Communications, 2013, 4:1924.
    Guo J J, Mao Z, Yan X L, et al. Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction[J]. Nano Energy, 2016, 28:261-268.
    Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials[J]. Nature Materials, 2015, 14(9):937-942.
    Abbet S, Sanchez A, Heiz U, et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30):one atom is enough![J]. Journal of the American Chemical Society, 2000, 122:3453-3457.
    Narula C K, Allard L F, Stocks G M, et al. Remarkable NO oxidation on single supported platinum atoms[J]. Scientific Reports, 2014, 4:7238.
    Yang S, Kim J, Tak Y J, et al. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions[J]. Angewandte Chemie, 2016, 55(6):2058-2062.
    Haruta M. Size-and support-dependency in the catalysis of gold[J]. Catalysis Today, 1997, 36(1):153-166.
    Akolekar D B, Foranb G, and Bhargava S K. X-ray absorption spectroscopic studies on gold nanoparticles in mesoporous and microporous materials[J]. Journal of Synchrotron Radiation, 2004, 11(3):284-290.
    Akolekar D B, Bhargava S K, Foran G, et al. Studies on gold nanoparticles supported on iron, cobalt, manganese, and cerium oxide catalytic materials[J]. J Mol Catal Chem, 2005, 238(1-2):78-87.
    Leskela M, Ritala M. Atomic layer deposition chemistry:recent developments and future challenges[J]. Angewandte Chemie, 2003, 42(45):5548-5554.
    King J S, Wittstock A, Biener J, et al. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels[J]. Nano Letters, 2008, 8(8):2405-2409.
    Liu C, Wang C C, Kei C C, et al. Atomic layer deposition of platinum nanoparticles on carbon nanotubes for application in proton-exchange membrane fuel cells[J]. Small, 2009, 5(13):1535-1538.
    Guo X G, Fang G Z, Li G, et al. Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen[J]. Science, 2014, 344(6184):616-619.
    Jana N R, Gearheart L, Murphy C J. Seeding growth for size control of 5-40 nm diameter gold nanoparticles[J]. Langmuir, 2001, 17:6782-6786.
    Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods:role of the size and nature of the seed[J]. Chem Mater, 2004, 16:3633-3640.
    Zhou W J, Yang L J. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation[J]. Electrochemistry Communications, 2007, 9(7):1725-1729.
    Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56.
    Hisn Y L, Hwang K C, Chen F R, et al. Production and insitu metal filling of carbon nanotubes in water[J]. Advanced Materials, 2001, 13:830-835.
    Alekseyev N I, Dyuzhev G A. Fullerene formation in an arc discharge[J]. Carbon, 2003, 41(7):1343-1348.
    Liang J X, Lin J, Yang X F, et al. Theoretical and experimental investigations on single-atom catalysis:Ir1/FeOx for CO oxidation[J]. The Journal of Physical Chemistry C, 2014, 118(38):21945-21951.
    Guo J, Morris J R, Contescu C I, et al. Atomic-scale imaging of graphene-based nanoporous carbon[J]. Microscopy and Microanalysis, 2012, 18(S2):1528-1529.
    Lin Y C, Teng P Y, Yeh C H, et al. Structural and chemical dynamics of pyridinic-nitrogen defects in graphene[J]. Nano Lett, 2015, 15(11):7408-7413.
    Guo J J, Lee J, Contescu C I, et al. Crown ethers in graphene[J]. Nature Communications, 2014, 5:5389.
  • 加载中
图(1)
计量
  • 文章访问数:  685
  • HTML全文浏览量:  106
  • PDF下载量:  982
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-25
  • 录用日期:  2018-02-11
  • 修回日期:  2018-01-29
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回