留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

以石墨烯与粘土间的插层实现石墨烯片层的稳定分散

李静 崔锦灿 杨真真 邱汉迅 唐志红 杨俊和

李静, 崔锦灿, 杨真真, 邱汉迅, 唐志红, 杨俊和. 以石墨烯与粘土间的插层实现石墨烯片层的稳定分散. 新型炭材料, 2018, 33(1): 19-25. doi: 10.1016/S1872-5805(18)60323-3
引用本文: 李静, 崔锦灿, 杨真真, 邱汉迅, 唐志红, 杨俊和. 以石墨烯与粘土间的插层实现石墨烯片层的稳定分散. 新型炭材料, 2018, 33(1): 19-25. doi: 10.1016/S1872-5805(18)60323-3
LI Jing, CUI Jin-can, YANG Zhen-zhen, QIU Han-xun, TANG Zhi-hong, YANG Jun-he. Stabilizing graphene layers by intercalating laponite between them. New Carbon Mater., 2018, 33(1): 19-25. doi: 10.1016/S1872-5805(18)60323-3
Citation: LI Jing, CUI Jin-can, YANG Zhen-zhen, QIU Han-xun, TANG Zhi-hong, YANG Jun-he. Stabilizing graphene layers by intercalating laponite between them. New Carbon Mater., 2018, 33(1): 19-25. doi: 10.1016/S1872-5805(18)60323-3

以石墨烯与粘土间的插层实现石墨烯片层的稳定分散

doi: 10.1016/S1872-5805(18)60323-3
基金项目: 国家自然科学基金(U1260104,U1560108,51272157).
详细信息
    作者简介:

    李静,副教授,硕士生导师.E-mail:lijing6080@usst.edu.cn

    通讯作者:

    杨俊和,教授,博士生导师.E-mail:jhyang@usst.edu.cn

  • 中图分类号: TB332

Stabilizing graphene layers by intercalating laponite between them

Funds: National Natural Science Foundation of China (U1260104, U1560108, 51272157).
  • 摘要: 氧化石墨烯的还原反应将导致石墨烯片层的复叠和团聚,使其在水分散液中发生沉淀。本文采用粘土胶体帮助还原氧化石墨烯在水中的稳定分散,并阻止石墨烯片层的复叠。氧化石墨烯水分散液与粘土胶体相混合之后,在微波辅助条件下,对氧化还石墨烯进行还原。当粘土与还原氧化石墨烯的质量比是1:1时,混合液的分散稳定性最好。XRD图谱中还原氧化石墨烯的(002)峰消失,可见石墨烯片层没有发生复叠。还原氧化石墨烯与粘土片层之间,由于静电相互作用和空间位阻效应,形成了插层结构。由透射电镜观察可知,还原氧化石墨烯表面均匀分布着粘土片层。粘土与还原氧化石墨烯的混合物的比表面积高于还原氧化石墨烯17.6%。这种物理插层法为石墨烯片层的稳定分散提供了另一种思路。
  • Li D, Mueller M B, Gilje S, et al. Processable aqueous dispersions of graphene nanosheets[J]. Nat Nanotechnol, 2008, 3:101-105.
    Stankovich S, Piner R D, Chen X, et al. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate)[J]. J Mater Chem, 2006, 16:155-158.
    Yang H, Li F, Shan C, et al. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement[J]. J Mater Chem, 2009, 19:4632-4638.
    Li J, Yang Z, Qiu H, et al. Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide[J]. J Mater Chem A, 2013, 1:11451-11456.
    Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. J Am Chem Soc, 2009, 131:3611-3620.
    Grandjean J, Laszlo P. Microdynamics of exchangeable lithium and sodium ions in laponite gels[J]. J Magn Reson, 1991, 92:404-408.
    Loginov M, Lebovka N, Vorobiev E. Laponite assisted dispersion of carbon nanotubes in water[J]. J Colloid Interface Sci, 2012, 365:127-136.
    Alhassan S M, Qutubuddin S, Schiraldi D A.Graphene arrested in laponite-water colloidal glass[J]. Langmuir, 2012, 28:4009-4015.
    Nethravathi C, Viswanath B, Shivakumara C, et al. The production of smectite clay/graphene composites through delamination and co-stacking[J]. Carbon, 2008, 46:1773-1781.
    Zhang C, Tjiu W W, Fan W, et al. Aqueous stabilization of graphene sheets using exfoliated montmorillonite nanoplatelets for multifunctional free-standing hybrid films via vacuum-assisted self-assembly[J]. J Mater Chem, 2011, 21:18011-18017.
    Yoo J, Lee S B, Lee C K, et al. Graphene oxide and laponite composite films with high oxygen-barrier properties[J]. Nanoscale, 2014, 6:10824-10830.
    Spyrou K, Potsi G, Diamanti E K, et al. Towards novel multifunctional pillared Nanostructures:Effective intercalation of Adamantylamine in graphene oxide and smectite clays[J]. Adv Funct Mater, 2014, 24:5841-5850.
    Bagri A, Mattevi C, Acik M, et al. Structural evolution during the reduction of chemically derived graphene oxide[J]. Nat Chem, 2010, 2:581-587.
    Pálková H, Madejová J, Zimowska M, et al. Laponite-derived porous clay heterostructures:Ⅱ. FTIR study of the structure evolution[J]. Micropor Mesopor Mat, 2010, 127:237-244.
    Daniel L M, Frost R L, Zhu H Y. Edge-Modification of Laponite with Dimethyl-octylmethoxysilane[J]. J Colloid Interface Sci, 2008, 321:302-309.
    Aboutalebi S H, Gudarzi M M, Zheng Q B, et al. Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions[J]. Adv Funct Mater, 2011, 21:2978-2988.
    Medhekar N V, Ramasubramaniam A, Ruoff R S, et al. Hydrogen bond networks in graphene oxide composite paper:structure and mechanical properties[J]. ACS Nano, 2010, 4:2300-2306.
    Avery R G, Ramsay J D F. Colloidal properties of synthetic hectorite clay dispersions:Ⅱ. light and small angle neutron scattering[J]. J Colloid Interface Sci, 1986, 109:448-454.
    YANG Z, ZHENG Q, QIU H, et al. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. New Carbon Materials, 2015, 30:41-47.
  • 加载中
图(1)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  78
  • PDF下载量:  432
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-11
  • 录用日期:  2018-02-11
  • 修回日期:  2018-01-18
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回