留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于高性能硫化镉敏化太阳能电池对电极的硫化铜/还原氧化石墨烯纳米复合材料的合成

Amr Hessein Ahmed Abd El-Moneim

Amr Hessein, Ahmed Abd El-Moneim. 用于高性能硫化镉敏化太阳能电池对电极的硫化铜/还原氧化石墨烯纳米复合材料的合成. 新型炭材料, 2018, 33(1): 26-35. doi: 10.1016/S1872-5805(18)60324-5
引用本文: Amr Hessein, Ahmed Abd El-Moneim. 用于高性能硫化镉敏化太阳能电池对电极的硫化铜/还原氧化石墨烯纳米复合材料的合成. 新型炭材料, 2018, 33(1): 26-35. doi: 10.1016/S1872-5805(18)60324-5
Amr Hessein, Ahmed Abd El-Moneim. Synthesis of copper sulfide/reduced graphene oxide nanocomposites for use as the counter electrodes of high-performance CdS-sensitized solar cells. New Carbon Mater., 2018, 33(1): 26-35. doi: 10.1016/S1872-5805(18)60324-5
Citation: Amr Hessein, Ahmed Abd El-Moneim. Synthesis of copper sulfide/reduced graphene oxide nanocomposites for use as the counter electrodes of high-performance CdS-sensitized solar cells. New Carbon Mater., 2018, 33(1): 26-35. doi: 10.1016/S1872-5805(18)60324-5

用于高性能硫化镉敏化太阳能电池对电极的硫化铜/还原氧化石墨烯纳米复合材料的合成

doi: 10.1016/S1872-5805(18)60324-5
详细信息
    通讯作者:

    Amr Hessein.E-mail:amr.ahmed@ejust.edu.eg

  • 中图分类号: TB333

Synthesis of copper sulfide/reduced graphene oxide nanocomposites for use as the counter electrodes of high-performance CdS-sensitized solar cells

  • 摘要: 用一釜水热合成法制备了硫化铜/还原氧化石墨烯纳米复合材料,改变前驱体中石墨烯含量,得到具有不同石墨烯含量的纳米复合材料。所制备的纳米复合材料首先和聚偏氟乙烯粘结剂混合,再涂覆在SnOx2-Fx基体上,得到以CdS敏化TiO2为负极的量子点太阳能电池的对电极,并与传统的Cu2S/Cu对电极进行比较。用场发射扫描电子显微镜、X-射线衍射、拉曼光谱、循环伏安和阻抗谱技术表征了纳米复合材料对电极的微观结构和性能。结果表明:硫化铜/还原氧化石墨烯纳米复合材料优于Cu2S/Cu对电极。前驱体中石墨烯的含量显著影响了硫化铜纳米晶的化学计量比和形貌。当前驱体石墨烯含量在中等水平下,获得了具有更多供Sx2-离子还原的活性位的优化的硫化铜/还原氧化石墨烯纳米复合材料。以此优化的纳米复合材料为对电极制备的量子点太阳能电池在100 mW/cm2的光照强度下具有高的、稳定的和可重复的2.36%的能量转化效率,高于用Cu2S/Cu为对电极的能量转化效率。此性能的提升归因于硫化铜纳米晶和导电的还原氧化石墨烯之间的协同作用,还原氧化石墨烯充当共催化剂和导电促进剂,降低对电极的内阻并加快多硫化物的还原。
  • A Badawi. Tuning the energy band gap of ternary alloyed Cd1-xPbxS quantum dots for photovoltaic applications[J]. Superlattices Microstruct, 2016, 90:124-131.
    A Badawi, N Al-Hosiny, S Abdallah. The photovoltaic performance of CdS quantum dots sensitized solar cell using graphene/TiO2 working electrode[J]. Superlattices Microstruct, 2015, 81:88-96.
    A Tubtimtae, T Hongto, K Hongsith, et al. Tailoring of boron-doped MnTe semiconductor-sensitized TiO2 photoelectrodes as near-infrared solar cell devices[J]. Superlattices Microstruct, 2014, 66:96-104.
    M Raja, N Muthukumarasamy, D Velauthapillai, et al. Enhanced photovoltaic performance of quantum dot-sensitized solar cell fabricated using Al-doped ZnO nanorod electrode[J]. Superlattices Microstruct, 2015, 80:53-62.
    D M Li, L Y Cheng, Y D Zhang, et al. Development of Cu2S/carbon composite electrode for CdS/CdSe quantum dot sensitized solar cell modules[J]. Sol Energy Mater Sol Cells, 2014, 120:454-461.
    I Hwang, K Yong. Counter electrodes for quantum-dot-sensitized solar cells[J]. Chem Electro Chem, 2015, 2(5):634-653.
    J G Radich, R Dwyer, P V Kamat. Cu2S reduced graphene oxide composite for high-efficiency quantum dot solar cells. Overcoming the redox limitations of S2-/Sn2- at the counter electrode[J]. J Phys Chem Lett, 2011, 2(19):2453-2460.
    K Meng, G Chen, K R Thampi. Metal chalcogenides as counter electrode materials in quantum dot sensitized solar cells:a perspective[J]. J Mater Chem A, 2015, 3:23074-23089.
    H Zhang, H Bao, X Zhong. Highly efficient, stable and reproducible CdSe-sensitized solar cells using copper sulfide as counter electrodes[J]. J Mater Chem A, 2015, 3(12):6557-6564.
    H Salaramoli, E Maleki, Z Shariatinia, et al. CdS/CdSe quantum dots co-sensitized solar cells with Cu2S counter electrode prepared by SILAR, spray pyrolysis and Zn-Cu alloy methods[J]. J Photochem Photobiol A Chem, 2013, 271:56-64.
    C Venkata Thulasi-Varma, S S Rao, C S S P Kumar, et al. Enhanced photovoltaic performance and time varied controllable growth of a CuS nanoplatelet structured thin film and its application as an efficient counter electrode for quantum dot-sensitized solar cells via a cost-effective chemical bath deposition[J]. Dalt Trans, 2015, 44:19330-19343.
    D Punnoose, H-J Kim, S Srinivasa Rao, et al. Cobalt sulfide counter electrode using hydrothermal method for quantum dot-sensitized solar cells[J]. J Electroanal Chem, 2015, 750:19-26.
    V H Vinh Quy, J H Kim, S H Kang, et al. Enhanced electrocatalytic activity of electrodeposited F-doped SnO2/Cu2S electrodes for quantum dot-sensitized solar cells[J]. J Power Sources, 2016, 316:52-59.
    J H Zeng, D Chen, Y F Wang, et al. Graphite powder film-supported Cu2S counter electrodes for quantum dot sensitized solar cells[J]. J Mater Chem C, 2015, 3:12140-12148.
    S Hassan, M Suzuki, A A El-Moneim. Facile synthesis of MnO2/graphene electrode by two-steps electrodeposition for energy storage application[J]. Int J Electrochem Sci, 2014, 9(12):8340-8354.
    E Ghoniem, S Mori, A Abdel-Moniem. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate[J]. J Power Sources, 2016, 324:272-281.
    A Hessein, F Wang, H Masai, et al. One-step fabrication of copper sulfide nanoparticles decorated on graphene sheets as highly stable and efficient counter electrode for CdS-sensitized solar cells[J]. Jpn J Appl Phys, 2016, 55(11):112301.
    B Zheng, C Gao. Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors[J]. New Carbon Mater ials, 2016:31(3):315-320.
    C Xu, R Yuan, X Wang. Selective reduction of graphene oxide[J]. New Carbon Mater ials, 2014, 29(1):61-66.
    L Liu, K P Annamalai, Y Tao. A hierarchically porous CuCo2S4/graphene composite as an electrode material for supercapacitors[J]. New Carbon Mater ials, 2016, 31(3):336-342.
    H Zhang, H Bao, X Zhong. Highly efficient, stable and reproducible CdSe-sensitized solar cells using copper sulfide as counter electrodes[J]. J Mater Chem A, 2015, 3(12):6557-6564.
    I Barceló, J M Campiña, T Lana-Villarreal, et al. A solid-state CdSe quantum dot sensitized solar cell based on a quaterthiophene as a hole transporting material[J]. Phys Chem Chem Phys, 2012, 14(16):5801-5807.
    X Wang, J Tian, C Fei, et al. Rapid construction of TiO2 aggregates using microwave assisted synthesis and its application for dye-sensitized solar cells[J]. RSC Adv, 2015, 5(12):8622-8629.
    G Wang, J Zhang, S Kuang, et al. The production of cobalt sulfide/graphene composite for use as a low-cost counter-electrode material in dye-sensitized solar cells[J]. J Power Sources, 2014, 269:473-478.
    C S Kim, S H Choi, J H Bang. New insight into copper sulfide electrocatalysts for quantum dot-sensitized solar cells:Composition-dependent electrocatalytic activity and stability[J]. ACS Appl Mater Interfaces, 2014, 6(24):22078-22087.
    M Najdoskia, I Grozdanova, C J Chunnilallb. Raman spectra of thin solid films of some metal sulfides[J]. J Mdecular structure, 1997, 410:267-270.
    A G Milekhin, N A Yeryukov, L L Sveshnikova, et al. Combination of surface-and interference-enhanced Raman scattering by CuS nanocrystals on nanopatterned Au structures[J]. Beilstein J Nanotechnol, 2015, 6(1):749-754.
    Z Li, F Gong, G Zhou, et al. NiS2/reduced graphene oxide nanocomposites for effi cient dye-sensitized solar cells[J]. J Phys Chem C, 2013, 117(13):6561-6566.
    C V V M Gopi, S Srinivasa Rao, S K Kim, et al. Highly effective nickel sulfide counter electrode catalyst prepared by optimal hydrothermal treatment for quantum dot-sensitized solar cells[J]. J Power Sources, 2015, 275:547-556.
    K Zhao, Z Pan, I Mora-Seró, et al. Boosting power conversion efficiencies of quantum-dot-sensitized solar cells beyond 8% by recombination control[J]. J Am Chem Soc, 2015, 137(16):5602-5609.
    P V Kamat. Quantum Dot Solar Cells. Semiconductor nanocrystals as light harvesters[J]. J Phys Chem C, 2008, 112(48):18737-18753.
    Y Jiang, X Zhang, Q-Q Ge, et al. Engineering the interfaces of ITO@Cu2S nanowire arrays toward efficient and stable counter electrodes for quantum-dot-sensitized solar cells[J]. ACS Appl Mater Interfaces, 2014, 6(17):15448-15455.
    H Geng, L Zhu, W Li, et al. Electrochemical growth of FeS on three-dimensional carbon scaffold as the high catalytic and stable counter electrode for quantum dot-sensitized solar cells[J]. Electrochim Acta, 2015, 182:1093-1100.
  • 加载中
图(1)
计量
  • 文章访问数:  507
  • HTML全文浏览量:  143
  • PDF下载量:  420
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-08
  • 录用日期:  2018-02-11
  • 修回日期:  2017-12-15
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回