留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水溶性碳纳米管对人胚肾和肝癌细胞毒性的研究

于世平 苏旭东 杜晶磊 王军丽 高宇端 张利 陈琳 杨永珍 刘旭光

于世平, 苏旭东, 杜晶磊, 王军丽, 高宇端, 张利, 陈琳, 杨永珍, 刘旭光. 水溶性碳纳米管对人胚肾和肝癌细胞毒性的研究. 新型炭材料, 2018, 33(1): 36-46. doi: 10.1016/S1872-5805(18)60325-7
引用本文: 于世平, 苏旭东, 杜晶磊, 王军丽, 高宇端, 张利, 陈琳, 杨永珍, 刘旭光. 水溶性碳纳米管对人胚肾和肝癌细胞毒性的研究. 新型炭材料, 2018, 33(1): 36-46. doi: 10.1016/S1872-5805(18)60325-7
YU Shi-ping, SU Xu-dong, DU Jing-lei, WANG Jun-li, GAO Yu-duan, ZHANG Li, CHEN Lin, YANG Yong-zhen, LIU Xu-guang. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells. New Carbon Mater., 2018, 33(1): 36-46. doi: 10.1016/S1872-5805(18)60325-7
Citation: YU Shi-ping, SU Xu-dong, DU Jing-lei, WANG Jun-li, GAO Yu-duan, ZHANG Li, CHEN Lin, YANG Yong-zhen, LIU Xu-guang. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells. New Carbon Mater., 2018, 33(1): 36-46. doi: 10.1016/S1872-5805(18)60325-7

水溶性碳纳米管对人胚肾和肝癌细胞毒性的研究

doi: 10.1016/S1872-5805(18)60325-7
基金项目: 山西省重点研发计划(201703D321015-1,201603D111010);国家自然科学基金(U1610255,U1607120);山西省科技创新重点团队(2015013002-10,201605D131045-10).
详细信息
    作者简介:

    于世平,博士,副教授.E-mail:yushiping6@126.com

    通讯作者:

    杨永珍,博士,教授.E-mail:yyztyut@126.com

  • 中图分类号: R34

The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells

Funds: Shanxi Provincial Key Research and Development Program (201703D321015-1, 201603D111010);National Natural Science Foundation of China (U1610255, U1607120);Shanxi Provincial Key Innovative Research Team in Science and Technology (2015013002-10, 201605D131045-10).
  • 摘要: 研究了聚乙二醇改性碳纳米管(PEG-CNTs)对人胚肾细胞(293T)及人肝癌细胞(HepG2)的体外细胞毒性。在染毒24、48和72 h后,用水溶性四氮唑法检测不同浓度PEG-CNTs对细胞活性的影响;采用碘化丙啶染色研究不同浓度的PEG-CNTs在对HepG2细胞染毒24 h后死亡细胞染色情况,并用流式细胞术定量测定细胞死亡率。结果表明:水溶性较好的PEG-CNTs作用于293T细胞与HepG2细胞,其毒性存在浓度依赖关系,毒性会随着浓度的升高而增大;根据ISO2109932-5细胞毒性标准,浓度≤ 100 μg/mL时为毒性Ⅰ级,认为PEG-CNTs没有毒性;当浓度为200 μg/mL时,毒性变为Ⅱ级,为轻微毒性,说明低剂量的PEG-CNTs对细胞未显示毒性作用;在研究的时间范围内未发现随时间延长而毒性等级的变化。
  • Li Z X, de Barros A L B, Soares D C F, et al. Functionalized single-walled carbon nanotubes:Cellular uptake, biodistribution and applications in drug delivery[J]. International Journal of Pharmaceutics, 2017, 524(1):41-54.
    Yang K, Feng L Z, Liu Z. Stimuli responsive drug delivery systems based on nano-graphene for cancer therapy[J]. Advanced Drug Delivery Reviews, 2016, 105:228-241.
    Dineshkumar B, Krishnakumar K, Bhatt A R, et al. Single-walled and multi-walled carbon nanotubes based drug delivery system:Cancer therapy:A review[J]. Indian Journal of Cancer, 2015, 52(3):262-273.
    Faraj Al A, Shaik A P, Shaik A S. Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model:Noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker[J]. International Journal of Nanomedicine, 2015, 10:157-161.
    Liu J J, Wang C, Wang X J, et al. Mesoporous silica coated single-walled carbon nanotubes as a multifunctional light-responsive platform for cancer combination therapy[J]. Advanced Functional Materials, 2015, 25(3):384-392.
    Zhang W L, He J L, Liu Z, et al. Biocompatible and pH-responsive triblock copolymer mPEG-b-PCL-b-PDMAEMA:Synthesis, self-assembly, and application[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2010, 48(5):1079-1091.
    Das M, Bandyopadhyay D, Singh R P, et al. Orthogonal bio-functionalization of magnetic nano-particles via "clickable" poly (ethylene glycol) silanes:A "universal ligand" strategy to design stealth and target-specific nano-carriers[J]. Materials Chemistry, 2012, 22(47):24652-24667.
    Moghimi S M, Hunter A C, Murray J C. Long-circulating and target-specific nanoparticles:Theory to practice[J]. Pharmacol Review, 2001, 53(2):283-318.
    Yu S P, Yuan W, Gao Y D, et al. The distribution of intravenously administered functionalized carbon nanotubes in rabbit tissue and their urinary excretion[J]. New Carbon Materials, 2012, 27(6):421-426.
    Almutary A, Sanderson B J S. The MTT and crystal violet assays:Potential confounders in nanoparticle toxicity testing[J]. International Journal of Toxicology, 2016, 35(4):454-458.
    E Z. Tissue Culture and Molecular Cytology[M]. Beijing:Beijing Press, 1997:108-121.
    Niu Y Y, Li S S, Lin Z T, et al. Development of propidium iodide as a fluorescence probe for the on-line screening of non-specific DNA-intercalators in fufang banbianlian injection[J]. Journal of Chromatography A, 2016, 1463:102-109.
    Hao H P. Standard Guide for Biological Evaluation of Medical Devices[M]. Beijing:Standards Press of China, 2002:100-110.
    Nescerecka A, Hammes F, Juhna T. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining[J]. Journal of Microbiological Methods, 2016, 131:172-179.
    Rezaei A, Noori L, Taghipour M. The Use of ANFIS and RBF to model and predict the inhibitory concentration values determined by MTT assay on cancer cell lines[J]. International Journal of Information Technology and Computer Science (IJITCS), 2016, 8(4):28-33.
    Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis[J]. Toxicol Letter, 2006, 160:121-126.
    Carlsson N, Borde A, Wölfel S, et al. Quantification of protein concentration by the bradford method in the presence of pharmaceutical polymers[J]. Analytical Biochemistry, 2011, 411(1):116-121.
    Hurt R H, Monthioux M, Kane A. Toxicology of carbon nanomaterials:Status, trends, and perspectives on the special issue[J]. Carbon, 2006, 44:1028-1033.
    Liu B Z, Zhou B, Wang H Y, et al. Effect of functionalized multi-walled carbon nanotubes on L02 cells[J]. Chinese Medical Sciences Journal, 2010, 32(4):455-460.
    Sato Y, Yokoyama A, Shibata K, et al. Influence of length on cytotoxicity of multi-walled carbon nanotubes against human acute monocytic leukemia cell line THP-1 in vitro and subcutaneous tissue of rats in vivo[J]. Molecular Biosystems, 2005, 1:176-182.
    Wick P, Manser P, Limbach L K, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity[J]. Toxicology Letters, 2007, 168(2):121-131.
    Crowley L C, Scott A P, Marfell B J, et al. Measuring cell death by propidium iodide uptake and flow cytometry[J]. Cold Spring Harbor Protocols, 2016(7):87-163.
  • 加载中
图(1)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  278
  • PDF下载量:  338
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-12
  • 录用日期:  2018-02-11
  • 修回日期:  2018-01-22
  • 刊出日期:  2018-02-28

目录

    /

    返回文章
    返回