留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

球床模块式高温气冷堆中的炭材料

周湘文 杨杨 宋晶 卢振明 张杰 刘兵 唐亚平

周湘文, 杨杨, 宋晶, 卢振明, 张杰, 刘兵, 唐亚平. 球床模块式高温气冷堆中的炭材料. 新型炭材料, 2018, 33(2): 97-108. doi: 10.1016/S1872-5805(18)60328-2
引用本文: 周湘文, 杨杨, 宋晶, 卢振明, 张杰, 刘兵, 唐亚平. 球床模块式高温气冷堆中的炭材料. 新型炭材料, 2018, 33(2): 97-108. doi: 10.1016/S1872-5805(18)60328-2
ZHOU Xiang-wen, YANG Yang, SONG Jing, LU Zhen-ming, ZHANG Jie, LIU Bing, TANG Ya-ping. Carbon materials in a high temperature gas-cooled reactor pebble-bed module. New Carbon Mater., 2018, 33(2): 97-108. doi: 10.1016/S1872-5805(18)60328-2
Citation: ZHOU Xiang-wen, YANG Yang, SONG Jing, LU Zhen-ming, ZHANG Jie, LIU Bing, TANG Ya-ping. Carbon materials in a high temperature gas-cooled reactor pebble-bed module. New Carbon Mater., 2018, 33(2): 97-108. doi: 10.1016/S1872-5805(18)60328-2

球床模块式高温气冷堆中的炭材料

doi: 10.1016/S1872-5805(18)60328-2
基金项目: 国家科技重大专项(ZX06901);国家重点研发计划(2016YFE0100700);国家自然科学基金(51420105006);清华大学十三五计划学科建设项目(2017HYYXKJS1).
详细信息
    通讯作者:

    周湘文,副教授,博士.E-mail:xiangwen@tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

Carbon materials in a high temperature gas-cooled reactor pebble-bed module

Funds: Chinese National S&T Major Project (ZX06901); Key Program for International S&T Cooperation Projects of China (2016YFE0100700); National Natural Science Foundation of China (51420105006); The "Thirteenth Five-Year Plan" Discipline Construction Foundation of Tsinghua University (2017HYYXKJS1).
  • 摘要: 与人类使用炭材料的悠久历史相比,炭材料在核反应堆的首秀却只是发生在70多年前。凭借其优良的综合性能,炭材料在核反应堆特别是高温气冷堆(HTR)中发挥了重要作用。作为第四代核反应堆候选堆型中最有希望的代表,中国的球床模块式高温气冷堆(HTR-PM)目前正在建设中。在HTR-PM中,炭材料扮演着堆芯结构材料、反射层、燃料基体、慢化剂、热和中子屏蔽材料等多重角色。由于炭材料的尺寸和性能受高温和中子辐照的影响,因此对于在HTR-PM中使用的炭材料的各项性能都有着严格的要求。本文详细介绍了HTR-PM中各种炭材料的性能及其制造工艺的要求,并简要介绍了HTR-PM当前的现状和未来的商业化发展。此外为满足未来高温气冷堆商用核电站的全面国产化需求,对生产核级石墨和石墨粉的主要原材料如焦炭和天然鳞片石墨未来的长期稳定供应进行了展望。最后简要介绍了目前正在美国橡树岭国家实验室入堆进行辐照试验的国产核级石墨的现状和未来的辐照试验计划。本文旨在为有志于研发用于未来商用高温气冷堆核电站中的炭材料的生产厂家提供参考,文中提及的大量信息对于炭材料的科研人员也很有借鉴意义。
  • Michio Inagaki, Kang Feiyu. Carbon Materials Science and Engineering-From Fundamentals to Applications[M]. Tsinghua University Press, Beijing, 2006, 3.
    E. Fermi. Experimental production of a divergent chain reaction[J]. American Journal of Physics, 1952, 20(9):536-558.
    Physics of Uranium and Nuclear Energy:Nuclear fission[OL]. Http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/introduction/physics-of-nuclear-energy.aspx (Updated December 2017).
    Timothy D. Burchell. Carbon Materials for Advanced Technologies[M]. Pergamon, 1999, p437.
    ZHOU Xiang-wen, TANG Ya-ping, LU Zhen-ming, et al. Nuclear graphite for high temperature gas-cooled reactors[J]. New Carbon Materials, 2017, 32(3):193-204.
    R. E. Nightingale. Nuclear Graphite[M]. Academic press, 1962.
    B. J. Marsden, A. N. Jones, G. N. Hall, et al. Structural Materials for Generation IV Nuclear Reactors, Chapter 14:Graphite as a Core Material for Generation IV Nuclear Reactor[M]. Elsevier Ltd., 2017.
    Electricity supplied by nuclear energy[OL]. Http://www.world-nuclear.org/nuclear-basics/electricity-supplied-by-nuclear-energy.aspx (Updated November 2017).
    A technology roadmap for Generation IV Nuclear Energy Systems. Issued by the U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum[Z]. December 2002.
    X. W. Zhou, C. H. Tang. Current status and future development of coated fuel particles for high temperature gas-cooled reactors[J]. Progress in Nuclear Energy, 2011, 53:182-188.
    W. Bernnat, W. Feltes. Models for reactor physics calculations for HTR pebble bed modular reactors[J]. Nuclear Engineering and Design, 2003, 222:331-347.
    G. Locatelli, M. Mancini, N. Todeschini. Generation IV nuclear reactors:current status and future prospects[J]. Energy Policy, 2013, 61:1503-1520.
    I. V. Dulera, R. K. Sinha, A. Rama Rao, et al. High temperature reactor technology development in India[J]. Progress in Nuclear Energy, 2017, 101:82-99.
    D. Hittner, E. Bogusch, M. Fütterer, et al. High and very high temperature reactor research for multipurpose energy applications[J]. Nuclear Engineering and Design, 2011, 241:3490-3504.
    Zongxin Wu, Dengcai Lin, Daxin Zhong. The design features of the HTR-10[J]. Nuclear Engineering and Design, 2002, 218:25-32.
    Zuoyi Zhang, Yujie Dong, Fu Li, et al. The Shandong Shidao Bay 200 MWe high temperature gas-cooled reactor pebble-bed module (HTR-PM) demonstration power plant:an engineering and technological innovation[J]. Engineering, 2016, 2(1):112-118.
    International Atomic Energy Agency, 2001. Current status and future development of modular high temperature gas cooled reactor technology[R]. IAEA-TECDOC-1198, 13-26.
    T. Burchell, R. Bratton, W. Windes. NGNP graphite selection and acquisition strategy[R]. ORNL/TM-2007/153, September, 2007.
    S. Knol, S. de Groot, R. V. Salama, et al. HTR-PM fuel pebble irradiation qualification in the High Flux Reactor in Petten[C]. International Topical Meeting on High Temperature Reactor Technology (HTR-2016), November 6-10, 2016. Las Vegas, NV, USA.
    Zhou Xiangwen, Lu Zhenming, Zhang Jie, et al. Preparation of spherical fuel elements for HTR-PM in INET[J]. Nuclear Engineering and Design, 2013, 263:456-461.
    Nuclear power in China:High temperature gas-cooled reactors:HTR-PM, HTR-PM 600[OL]. Http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/china-nuclear-power.aspx (Updated December 2017).
    Hui Yang, Yufa Chen, He Li, et al. Nuclear graphite development and neutron irradiation testing programme in Sinosteel AMC[C]. The 15th International Nuclear Graphite Specialist Meeting (INGSM-15), Hangzhou, China, September 2014.
    J. W Geringer, A. A. Campbell, J. D. Arregui-Mena, et al. Sinosteel AMC graphite irradiation program at ORNL[C]. The 18th International Nuclear Graphite Specialist Meeting (INGSM-18), Baltimore, Maryland, USA, September 2017.
  • 加载中
图(1)
计量
  • 文章访问数:  446
  • HTML全文浏览量:  95
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-15
  • 录用日期:  2018-04-28
  • 修回日期:  2018-04-04
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回