留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钕负载二氧化钛-炭杂化气凝胶的制备及其光催化性能

邵霞 潘峰 郑励 张睿 张文雅

邵霞, 潘峰, 郑励, 张睿, 张文雅. 钕负载二氧化钛-炭杂化气凝胶的制备及其光催化性能. 新型炭材料, 2018, 33(2): 116-124. doi: 10.1016/S1872-5805(18)60329-4
引用本文: 邵霞, 潘峰, 郑励, 张睿, 张文雅. 钕负载二氧化钛-炭杂化气凝胶的制备及其光催化性能. 新型炭材料, 2018, 33(2): 116-124. doi: 10.1016/S1872-5805(18)60329-4
SHAO Xia, PAN Feng, ZHENG Li, ZHANG Rui, ZHANG Wen-ya. Nd-doped TiO2-C hybrid aerogels and their photocatalytic properties. New Carbon Mater., 2018, 33(2): 116-124. doi: 10.1016/S1872-5805(18)60329-4
Citation: SHAO Xia, PAN Feng, ZHENG Li, ZHANG Rui, ZHANG Wen-ya. Nd-doped TiO2-C hybrid aerogels and their photocatalytic properties. New Carbon Mater., 2018, 33(2): 116-124. doi: 10.1016/S1872-5805(18)60329-4

钕负载二氧化钛-炭杂化气凝胶的制备及其光催化性能

doi: 10.1016/S1872-5805(18)60329-4
基金项目: 上海地方高校能力建设项目(12160503600);上海市一流学科建设项目(J201212);国家自然科学基金项目(U1332107);上海应用技术大学复合材料重点学科建设项目(10210Q140001).
详细信息
    作者简介:

    邵霞,讲师.E-mail:shaoxia@sit.edu.cn

    通讯作者:

    张睿,教授.E-mail:zhangrui@sit.edu.cn

  • 中图分类号: TB333

Nd-doped TiO2-C hybrid aerogels and their photocatalytic properties

Funds: Capacity Building Program of Shanghai Local Universities (12160503600);The First-Class Discipline Construction Fund of Shanghai Municipal Education Commission (J201212);Natinal Natural Science Foundation of China (U1332107);Key Discipline Construction Fund of Composite Materials of Shanghai Institute of Technology (10210Q140001).
  • 摘要: 采用溶胶凝胶法和浸渍法制备了不同钕掺量负载的二氧化钛/炭(TiO2-C)杂化气凝胶。通过XRD,SEM,FTIR,XPS及氮气吸附脱附等温线表征了样品的微观结构、形貌及表面元素状态。在500 W汞灯照射下,以亚甲基蓝为目标降解物,研究了样品的光催化活性。结果表明,所制样品为不规则颗粒,钕的掺杂抑制了TiO2颗粒的生长,TiO2为锐钛矿型且炭呈现不定型态,同时Nd3+进入TiO2内形成Ti-O-Nd键。在紫外光波段,样品具有较强的吸收性能,表现出紫外光照下对亚甲基蓝良好的光催化性能。当钕的负载量为3%-4%时,样品具有最佳的光催化活性,此时亚甲基蓝在紫外光照160 min后被完全降解。
  • James L G, John D S, Clemens B, et al. Highly efficient formation of visible light tunable TiO2-xNx photocatalysts and their transformation at the nanoscale[J]. ChemInform, 2006, 35:1230-1240.
    Baia L, Diamandescu L, Barbu-Tudoran L, et al. Efficient dual functionality of highly porous nanocomposites based on TiO2 and noble metal particles[J]. Journal of Alloys & Compounds, 2011, 509:2672-2678.
    Sharma M, Jain T, Singh S, et al. Photocatalytic degradation of organic dyes under UV-Visible light using capped ZnS nanoparticles[J]. Solar Energy, 2012, 86:626-633.
    Martha M, Wilson F. Remediation of pesticide contaminated soil using TiO2 mediated by solar light[J]. Catalysis Today, 2002, 76:201-207.
    Ramacharyulu P, Prasad G, Ganesan K, et al. Photocatalytic decontamination of sulfur mustard using titania nanomaterials[J]. Journal of Molecular Catalysis A Chemical, 2012, s353-354:132-137.
    Sahoo C, Gupta A K. Characterization and photocatalytic performance evaluation of various metal ion-doped microstructured TiO2 under UV and visible light[J]. Journal of Environmental Science and Health, Part A, 2015, 50:659-668.
    Wahi R K, William W Y, Liu Y P, et al. Photodegradation of congo red catalyzed by nanosized TiO2[J]. Journal of Molecular Catalysis A Chemical, 2005, 242:48-56.
    Anuja B, Mrinal R P, Anjali A, et al. Surface modified Nd doped TiO2 nanoparticles as photocatalysts in UV and solar light irradiation[J]. Solar Energy, 2013, 91:111-119.
    Singh D P, Ali N. Synthesis of TiO2 and CuO nanotubes and nanowires[J]. Science of Advanced Materials, 2010, 2:295-335.
    Periyat P, Suresh C P, Declan E, et al. Improved high-temperature stability and sun-light-driven photocatalytic activity of sulfur-doped anatase TiO2[J]. J.Phys.Chem.C, 2008, 112:7644-7652.
    Yang X, Ma F, Li K, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide:new efficient photocatalyst for dye degradation[J]. Journal of Hazardous Materials, 2010, 175:429-38.
    Hoffmann M R, Choi W Y, Bahnemann. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95:69-96.
    Grabowska E, Reszczyńska J, Zaleska A. Mechanism of phenol photodegradation in the presence of pure and modified-TiO2:A review[J]. Water Research, 2012, 46:5453-71.
    Obregon S, Kubacka A, Fernandez-Garcia M, et al. High-performance Er3+-TiO2 system:Dual up-conversion and electronic role of the lanthanide[J]. Journal of Catalysis, 2013, 299:298-306.
    de la Cruz Romero D, Torres Torres G, Arévalo J C. et al. Synthesis and characterization of TiO2 doping with rare earths by sol-gel method:photocatalytic activity for phenol degradation[J]. Journal of Sol-Gel Science and Technology, 2010, 56:219-226.
    Du J M, Chen H J, Yang H, et al. A facile sol-gel method for synthesis of porous Nd-doped TiO2 monolith with enhanced photocatalytic activity under UV-Vis irradiation[J]. Nanotechnology & Precision Engineering, 2013, 182:87-94.
    Zhang Q W, Wang J S, Tang Q, et al. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J]. Journal of Materials Chemistry, 2003, 13:2996-3001.
    Shao X, Lu W C, Zhang R. et al. Enhanced photocatalytic activity of TiO2-C hybrid aerogels for methylene blue degradation[J]. Scientific Reports, 2013, 3:3018.
    Carolina S M, Javier R D, Carlos J L, et al. Low concentration Fe-doped alumina catalysts using sol-gel and impregnation methods:the synthesis, characterization and catalytic performance during the combustion of trichloroethylene[J]. Materials 2014, 7:2062-2086.
    Pavasupree, Sorapong, et al. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand[J]. Journal of Solid State Chemistry, 2005, 24:3110-3116.
    Bart R, Karl C G, Sandeep P, et al. Enhanced efficiency and stability of perovskite solar cells through Nd-doping of mesostructured TiO2[J]. Advanced Energy Materials, 2016, 6:1501868.
    Xu A W, Gao Y, Liu H Q, The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles[J]. Journal of Catalysis, 2002, 207:151-157.
    Meng Z H, Wan L H, Zhang L J, et al. One-step fabrication of Ce-N-codoped TiO2 nano-particle and its enhanced visible light photocatalytic performance and mechanism[J]. Journal of Industrial & Engineering Chemistry, 2014, 20:4102-4107.
    Zhang X H, Luo L T, Duana Z H, Preparation and application of Ce-doped mesoporous TiO2 oxide[J]. Reaction Kinetics, Mechanisms and Catalysis, 2005, 87:43-50.
    Biswajit C, Bikash B, Amarjyoti C, Ce-Nd codoping effect on the structural and optical properties of TiO2 nanoparticles[J]. Materials Science & Engineering B, 2013, 178:239-247.
    Erdem B, Hunsicker R A, Simmons G W, et al. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation[J]. Langmuir, 2001. 17:2664-2669.
    Wu Y M, Zhang J L, Xiao L,et al. Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light[J]. Applied Surface Science, 2010. 256:4260-4268.
    Liu J K, An T C, Li G Y, et al. Preparation and characterization of highly active mesoporous TiO2 photocatalysts by hydrothermal synthesis under weak acid conditions[J]. Microporous & Mesoporous Materials, 2009, 124:197-203.
    Shi H X, Zhang T Y, An T C, et al. Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids[J]. Journal of Colloid & Interface Science, 2012, 380:121-127.
    Pan L, Zou J J, Zhang X, et al. Water-mediated promotion of dye sensitization of TiO2 under visible light[J]. Journal of the American Chemical Society, 2011, 133:10000.
    Mills A, An overview of the methylene blue ISO test for assessing the activities of photocatalytic films[J]. Applied Catalysis B Environmental, 2012, 128:144-149.
    Du J, Gu X, Wu Q, et al. Hydrophilic and photocatalytic activities of Nd-doped titanium dioxide thin films[J]. Transactions of Nonferrous Metals Society of China, 2015, 25:2601-2607.
  • 加载中
图(1)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  84
  • PDF下载量:  307
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-23
  • 录用日期:  2018-04-28
  • 修回日期:  2018-04-10
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回