留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅烷改性氧化石墨烯-聚羧酸复合物的合成及性能

王琴 李时雨 潘硕 郭紫薇

王琴, 李时雨, 潘硕, 郭紫薇. 硅烷改性氧化石墨烯-聚羧酸复合物的合成及性能. 新型炭材料, 2018, 33(2): 131-139. doi: 10.1016/S1872-5805(18)60330-0
引用本文: 王琴, 李时雨, 潘硕, 郭紫薇. 硅烷改性氧化石墨烯-聚羧酸复合物的合成及性能. 新型炭材料, 2018, 33(2): 131-139. doi: 10.1016/S1872-5805(18)60330-0
WANG Qin, LI Shi-yu, PAN Shuo, GUO Zi-wei. Synthesis and properties of a silane and copolymer-modified graphene oxide for use as a water-reducing agent in cement pastes. New Carbon Mater., 2018, 33(2): 131-139. doi: 10.1016/S1872-5805(18)60330-0
Citation: WANG Qin, LI Shi-yu, PAN Shuo, GUO Zi-wei. Synthesis and properties of a silane and copolymer-modified graphene oxide for use as a water-reducing agent in cement pastes. New Carbon Mater., 2018, 33(2): 131-139. doi: 10.1016/S1872-5805(18)60330-0

硅烷改性氧化石墨烯-聚羧酸复合物的合成及性能

doi: 10.1016/S1872-5805(18)60330-0
基金项目: 国家自然科学基金(00881915021);北京市自然科学基金(8182014).
详细信息
    通讯作者:

    王琴,副教授.E-mail:wangqin@bucea.edu.cn

  • 中图分类号: TB332

Synthesis and properties of a silane and copolymer-modified graphene oxide for use as a water-reducing agent in cement pastes

Funds: National Natural Science Foundation of China (00881915021); Beijing Natural Science Foundation(8182014).
  • 摘要: 氧化石墨烯能显著增强增韧水泥基复合材料,但会对水泥浆体的流动性能带来负面影响。通过硅烷偶联剂乙烯基三甲氧基硅烷对氧化石墨烯(GO)进行改性,制备出带有乙烯基的硅烷改性氧化石墨烯(S-GO),将S-GO与羧酸单体进行共聚合反应,得到硅烷改性氧化石墨烯-聚羧酸复合物(P-S-GO)。利用FTIR与XRD等手段对GO、S-GO与P-S-GO的微观结构、元素组成及分散性进行表征;同时,将P-S-GO掺入水泥净浆中,测试其流动度与流变性能。结果表明:硅烷偶联剂能通过缩合反应成功接枝到氧化石墨烯上,形成富含活性双键的氧化石墨烯,并通过与羧酸单体和大单体的共聚合反应,合成P-S-GO复合物。与GO相比,P-S-GO在水泥浆体系中有着更良好的分散能力;将P-S-GO掺入水泥浆中可以有效改善GO对于水泥浆体工作性的负面影响,改善流动度与流变性能。
  • Alaa M. Rashad. A comprehensive overview about the effect of nano-SiO2 on some properties of traditional cementitious materials and alkali-activated fly ash[J]. Construction and Building Materials, 2014, 52:437-464.
    Yang R H, Wen X L, ShuH Y, et al. Performance Influence of composite nano-materials on concrete and cement mortar[J]. Journal of Chongqing Jianzhu University, 2007, 29(5):144-148.
    Arkles B. Tailoring surfaces with silanes[J]. Chemtech, 1977, 7(12):766-778.
    Wang Q, Wang J, Lu C X, et al. Influence of graphene oxide additions on the microstructure and mechanical strength of cement[J]. New Carbon Materials, 2015, 30(4):349-356.
    Peyvandi, Amirpasha. Surface-modified graphite nanomaterials for improved reinforcement efficiency in cementitious paste[J]. Carbon, 2013, 63(2):175-186.
    Lv S H, Deng L J, Yang W Q, et al. Fabrication of polycarboxylate/graphene oxide nanosheet composites by copolymerization for reinforcing and toughening cement composites[J]. Cement & Concrete Composites, 2016, 66:1-9.
    Yan JL, Chen G J, Cao J, et al. Functionalized graphene oxide with ethylenediamine and 1,6-hexanediamine[J]. New Carbon Materials, 2012, 52(5):624-624.
    杨永岗, 陈成猛, 温月芳, 等. 氧化石墨烯及其与聚合物的复合[J]. 新型炭材料, 2008, 23(3):193-200. (YANG Yong-gang, CHE Cheng-meng, WEN Yue-fang, et al. Oxidized graphene and graphene based polymer composites[J]. New Carbon Materials, 2008, 23(3):193-200.)
    时镜镜, 马文石, 林晓丹. KH-570功能化石墨烯的制备与表征[J]. 无机化学学报, 2012, 28(1):131-136. (SHI Jing-jing, MA Wen-shi, LINXiao-dan. Synthesis and characterization of functionalized graphene with KH-570[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(1):131-136.)
    Kim H M, Lee H S. Water and oxygen permeation through transparent ethylene vinyl alcohol/(graphene oxide) membranes[J]. Carbon Letters, 2014, 15(1):50-56.
    Yang Z, Chen X H, Liu Y Q, et al. Study of carbon nanotubes methylolated and grafted with maleic anhydride[J]. Acta Chimica Sinica, 2006, 64(3):203-207.
    Choi S, Hwang D K, Lee H S. Thermal properties in strong hydrogen bonding systems composed of poly(vinyl alcohol), polyethyleneimine, and graphene oxide[J]. Carbon Letters, 2014, 15(4):282-289.
    Li Y, Guo H, Zhang Y, et al. Synthesis of copolymers with cyclodextrin as pendants and its end group effect as superplasticizer[J]. Carbohydrate Polymers, 2014, 102(1):278-287.
    Zhao L, Guo X, Ge C, et al. Investigation of the effectiveness of PC@GO on the reinforcement for cement composites[J]. Construction & Building Materials, 2016, 113:470-478.
    Kong X M, Shi Z, Lu Z. Synthesis of novel polymer nano-particles and their interaction with cement[J]. Construction & Building Materials, 2014, 68(4):434-443.
    Wang Qin, Cui Xin-you, Wang Jian, et al. Effect of fly ash on rheological properties of graphene oxide cement paste[J]. Construction & Building Materials, 2017, 138:35-44.
    Wang Q, Wang J, Lv C X, et al. Rheological behavior of fresh cement pastes with a graphene oxide additive[J]. New Carbon Materials, 2016, 31(6):574-584.
    Shang Y, Zhang D, Yang C, et al. Effect of graphene oxide on the rheological properties of cement pastes[J]. Construction & Building Materials, 2015, 96:20-28.
    Zhang Y R, Kong X M, Hou SS, et al. Study on the rheological properties of fresh cement asphalt paste[J]. Construction & Building Materials, 2012, 27(1):534-544.
    Zhang YR, Kong X M, Lu ZC, et al. Influence of triethanolamine on the hydration product of portlandite in cement paste and the mechanism[J]. Cement & Concrete Research, 2016, 87:64-76.
    张力冉, 王栋民, 潘佳, 等. 新拌水泥浆体絮凝结构与流变行为及有效体积分数的关系[J]. 硅酸盐学报,2014,42(9):1209-1218. (ZHANG Li-ran, WANG Dong-min, PAN Jia, et al. Relationship between flocculent structures and rheological behavior/effective volume fraction of fresh cement paste[J]. Journal of the Chinese Ceramic Society, 2014, 42(9):1209-1218.)
    Khayat K H,Yahia A, Sayed M. Effect of supplementary cementitious materials on rheological properties, bleeding,and strength of structural grout[J]. Aci Materials Journal, 2008, 105(6):585-593.
    Zhang X, Zhang L. Application of rheological theory in cement-based materials[J]. Fly Ash Comprehensive Utilization, 2013, (4):9-13.
  • 加载中
图(1)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  157
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 录用日期:  2018-04-28
  • 修回日期:  2018-04-03
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回