留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管纱在应力下的压阻效应:现象和影响因素

Jude C. Anike Kalayu Belay Jandro L. Abot

Jude C. Anike, Kalayu Belay, Jandro L. Abot. 碳纳米管纱在应力下的压阻效应:现象和影响因素. 新型炭材料, 2018, 33(2): 140-154. doi: 10.1016/S1872-5805(18)60331-2
引用本文: Jude C. Anike, Kalayu Belay, Jandro L. Abot. 碳纳米管纱在应力下的压阻效应:现象和影响因素. 新型炭材料, 2018, 33(2): 140-154. doi: 10.1016/S1872-5805(18)60331-2
Jude C. Anike, Kalayu Belay, Jandro L. Abot. Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology. New Carbon Mater., 2018, 33(2): 140-154. doi: 10.1016/S1872-5805(18)60331-2
Citation: Jude C. Anike, Kalayu Belay, Jandro L. Abot. Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology. New Carbon Mater., 2018, 33(2): 140-154. doi: 10.1016/S1872-5805(18)60331-2

碳纳米管纱在应力下的压阻效应:现象和影响因素

doi: 10.1016/S1872-5805(18)60331-2
详细信息
  • 中图分类号: TQ127.1+1

Piezoresistive response of carbon nanotube yarns under tension: Parametric effects and phenomenology

  • 摘要: 碳纳米管因机械应力敏感特性而成为传感器的理想材料。单原子层厚度的石墨烯片卷曲而成的单壁碳纳米管具有大约1 nm的管径。碳纳米管纺丝形成纱,使其能够用于结构组份中。本文研究了碳纳米管纱的几何尺寸、力学性能和准静态应力加载速率对其压阻效应的影响。应力加载速率影响碳纳米管纱的失效机理和机电特性。高应力加载速率导致拉伸强度的增加和正压阻效应,而低应力加载速率引起较高的应力失效与负压阻效应。碳纳米管纱的压阻传感器系数随应力加载速率基本不变,但其对于应力水平和碳纳米管纱的几何尺寸具有高度依赖性。作为传感器所需的线性压阻关系在高应力加载速率下相关系数为0.995,而在低应力加载速率下相关系数只有0.832。
  • Abot J L, Schulz M J, Song Y, et al. Novel distributed strain sensing in polymeric materials[J]. Smart Mater Struct, 2010, 19(8):085007-1-085007-19.
    Abot J L, Song Y, Sri V M, et al. Delamination detection with carbon nanotube thread in self-sensing composite materials[J]. Compos Sci Technol, 2010, 70(7):1113-1119.
    Zhao H, Zhang Y, Bradford P D, et al. Carbon nanotube yarn strain sensors[J]. Nanotechnology, 2010, 21:305502.
    Li Y L, Kinloch I A, Windle A H. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science, 2004, 304:276-278.
    Jiang K L, Li Q Q, Fan S S. Nanotechnology:spinning continuous carbon nanotube yarns-carbon nanotubes weave their way into a range of imaginative macroscopic applications[J]. Nature, 2002, 419(6909):1-801.
    Deng F, Lu W B, Zhao H B, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite[J]. Carbon, 2011, 49:1752-1757.
    Vigolo B, Penicaud A, Coulon C, et al. Macroscopic fibers and ribbons of oriented carbon nanotubes[J]. Science, 2000, 290(5495):1331-1334.
    Zhang M, Atkinson K R, Baughman R H. Multifunctional carbon nanotube fiber yarns by downsizing an ancient technology[J]. Science, 2004, 306:1358-1361.
    Jayasinghe C, Chakrabarti S, Schulz M J, et al. Spinning yarn from long carbon nanotube arrays[J]. Journal of Materials Research, 2011, 26:1-7.
    Koziol K, Vilatela J, Moisala A, et al. High-performance carbon nanotube fiber[J]. Science, 2007, 318(5858):1892-1895.
    Lu W, Zu M, Byun J H, et al. State of the art of carbon nanotube fibers:opportunities and challenges[J]. Adv Mater, 2012, 24(14):1805-1833.
    Wu A S, Tsu-Wei Chou. Carbon nanotube fibers for advanced composites[J]. Materials Today, 2012, 15:7-8.
    Zheng L X, Zhang X F, Li Q W, et al. Carbon-nanotube cotton for large-scale fibers[J]. Adv Mater, 2007, 19(18):2567-2570.
    Wu A S, Chou T W, Gillespie Jr J W, et al. Electromechanical response and failure behaviour of aerogel spun carbon nanotube fibres under tensile loading[J]. J Mater Chem, 2012, 22:6792-6798.
    Jayasinghe C, Li W, Song Y, et al. Nanotube responsive materials[J]. MRS Bulletin, 2010, 35(9):682-692.
    Lekawa-Raus A, Koziol KKK, Windle A H. Piezoresistive effect in carbon nanotube fibers[J]. ACS Nano, 2014, 8(11):11214-11224.
    Miao, M. Yarn spun from carbon nanotube forests:Production, structure, properties and applications[J]. Particuology, 2013, 11:378-393.
    Wang Y, Xia Y M. The effects of strain rate on the mechanical behaviour of Kevlar fibre bundles:an experimental and theoretical study[J]. Compos A, 1998, 29A:1141-1415.
    Wang Y, Xia Y M. Experimental and theoretical study on the strain rate and temperature dependence of mechanical behavior of Kevlar fiber[J]. Compos Part A. Appl S, 1999, 30(11):1251-1257.
    Zhu D J, Mobasher B, Rajan S D. Experimental study of dynamic behavior of Kevlar 49 single yarn. In:Proceedings, SEM annual conference, Indianapolis, USA[J]. Society for Experimental Mechanics, 2010:147-152.
    Schwartz P, Netravali A, Sembach S. Effects of strain rate and gauge length on the failure of ultrahigh strength polyethylene fibers[J]. Text Res J, 1986, 56(8):502-508.
    Wu A S, Nie X, Hudspeth M C, et al. Strain rate-dependent tensile properties and dynamic electromechanical response of carbon nanotube fibers[J]. Carbon, 2012:3876-3881.
    Zhang Y, Zheng L, Sun G, et al. Failure mechanisms of carbon nanotube fibers under different strain rates[J]. Carbon, 2012:2887-2893.
    Anike J C, Bajar A, Abot J L. Time-dependent effects on the coupled mechanical-electrical response of carbon nanotube yarns under tensile loading[J]. J Carbon Res, 2016, 2(1):3.
    Wang P, Zhang X, Hansen R V, et al. Strengthening and failure mechanisms of individual carbon nanotube fibers under dynamic tensile loading[J]. Carbon, 2016, 102:18-31.
    Yakobson B I, Campbell M P, Brabec C J, et al. High strain rate fracture and C-chain unraveling in carbon nanotubes[J]. Comp Mater Sci, 1997, 8(4):341-348.
    Zhan Z Y, Zhang Y N, Sun G Z, et al. The effects of catalyst treatment on fast growth of millimeter-long multiwalled carbon nanotube arrays[J]. Appl Surf Sci, 2011, 257(17):7704-7708.
    Hill F A, Havel T F, Hart A J, et al. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification[J]. ACS Appl Mater Interfaces, 2013, 5:7198-7207.
    Gspann T S, Montinaro N, Pantano A, et al. Mechanical properties of carbon nanotube fibres:St Venant's principle at the limit and the role of imperfections[J]. Carbon, 2015, 93:1021-1033.
    Buehler M J. Mesoscale modeling of mechanics of carbon nanotubes:Self-assembly, self-folding and fracture[J]. Journal of Materials Research, 2006, 21:2855-2869.
    Cullinan M, Culpepper M. Carbon nanotube as piezoresistive microelectromechanical sensors:Theory and experiment[J]. Phys Rev B, 2010, 82:115428.
    Pan N. Development of a constitutive theory for short fiber yarns:Mechanics of staple yarn without slippage effect[J]. Textile Res J, 1992, 62(12):749-765.
    Pan N. Development of a constitutive theory for short fiber yarns. Part Ⅱ:Mechanics of staple yarn with slippage effect[J]. Textile Res J, 1993, 63(9):504-514.
    Peirce F T. Tensile tests for cotton yarns. Part 5:"Weakest link" theorems on the strength of long and of composite specimens[J]. Journal of the Textile Institute Transactions 1926, 17:355-368.
    Realff M L, Pan N, Seo M, et al. A stochastic simulation of the failure process and ultimate strength of blended continuous yarns[J]. Textile Res J, 2000, 70(5):415-430.
    Abot J L, Alosh T, Belay K. Strain dependence of electrical resistance in carbon nanotube yarns[J]. Carbon, 2014, 70:95-102.
    Obitayo W, Liu T. A review:Carbon nanotube-based piezoresistive strain sensors[J]. J Sens, 2012:652438.
    Vilatela J J, Windle A H. A multifunctional yarn made of carbon nanotubes[J]. J Eng Fiber Fabr, 2012, 7:23-28.
    Yang L, Anantram M P, Han J, et al. Band-gap change of carbon nanotubes:effect of small uniaxial and torsional strain[J]. Phys Rev B, 1999, 60(19):13874-13878.
    Berger C, Yi Y, Wang Z L, et al. Multiwalled carbon nanotubes are ballistic conductors at room temperature[J]. Applied Physics A, 2002, 74(3):363-365.
    Koratkar N, Modi A, Lass E, et al. Temperature effects on resistance of aligned multiwalled carbon nanotube films[J]. Journal of Nanoscience and Nanotechnology, 2004, 4(7):744-748.
    Li X, Levy C, Elaadil L. Multiwalled carbon nanotube film for strain sensing[J]. Nanotechnology, 2008, 19(4):045501.
    Loh K J, Kim J, Lynch J P, et al. Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing[J]. Smart Mat Struct, 2007, 16(2):429-438.
    Zu M, Li Q, Zhu Y, et al. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test[J]. Carbon, 2012:1271-1279.
  • 加载中
图(1)
计量
  • 文章访问数:  350
  • HTML全文浏览量:  67
  • PDF下载量:  272
  • 被引次数: 0
出版历程
  • 录用日期:  2018-04-28
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回