留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物相溶性多孔炭-香豆素复合材料的制备及其细胞成像和靶向给药

S. Yallappa Shoriya Aruni Abdul Manaf Gurumurthy Hegde

S. Yallappa, Shoriya Aruni Abdul Manaf, Gurumurthy Hegde. 生物相溶性多孔炭-香豆素复合材料的制备及其细胞成像和靶向给药. 新型炭材料, 2018, 33(2): 162-172. doi: 10.1016/S1872-5805(18)60332-4
引用本文: S. Yallappa, Shoriya Aruni Abdul Manaf, Gurumurthy Hegde. 生物相溶性多孔炭-香豆素复合材料的制备及其细胞成像和靶向给药. 新型炭材料, 2018, 33(2): 162-172. doi: 10.1016/S1872-5805(18)60332-4
S. Yallappa, Shoriya Aruni Abdul Manaf, Gurumurthy Hegde. Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells. New Carbon Mater., 2018, 33(2): 162-172. doi: 10.1016/S1872-5805(18)60332-4
Citation: S. Yallappa, Shoriya Aruni Abdul Manaf, Gurumurthy Hegde. Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells. New Carbon Mater., 2018, 33(2): 162-172. doi: 10.1016/S1872-5805(18)60332-4

生物相溶性多孔炭-香豆素复合材料的制备及其细胞成像和靶向给药

doi: 10.1016/S1872-5805(18)60332-4
详细信息
    通讯作者:

    Gurumurthy Hegde.E-mail:murthyhegde@gmail.com

  • 中图分类号: TB332

Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells

  • 摘要: 将棕榈叶在惰性气氛中经一步热解过程制备出多孔炭(NPCs),并结合香豆素-6(C-6)形成NPCs-C-6复合荧光染料来进行癌细胞成像及靶向给药。通过XRD和Raman分析可知,NPCs具有高的含碳量。傅里叶红外分析表明棕榈叶中含有纤维素、半纤维素和木质素,这有利于NPCs的形成,以及香豆素-6为导航分子的细胞成像和靶向给药。采用SEM和TEM观察NPCs结合前后的结构形貌,XPS表征元素组成。采用Zeta电位为初始指标来确定颗粒分散质量,以适合生物医学应用。NPCs-C-6分析细胞毒性和成像试验表明,对正常细胞系(MDCK:ATCC® CCL-34TM)有高的生物相溶性,对人体癌细胞系(A-375:ATCC® CRL-1619TM与N2A:ATCC® CCL-131TM)有高的毒性。因此,这些研究结果有望为生物基功能NPCs作治疗载体的研究进展提供新思路。
  • Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy:mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs[J]. Cancer Res, 1986, 46:6387-92.
    Jain R K. Delivery of molecular and cellular medicine to solid tumors[J]. Adv Drug Deliv Rev, 2001, 46:149-68.
    Mickler F M, M ckl L, Ruthardt N, et al. Tuning nanoparticle uptake:live-cell imaging reveals two distinct endocytosis mechanisms mediated by natural and artificial EGFR targeting ligand[J]. Nano Lett, 2012, 12:3417-23.
    Liu Y, Lu W. Recent advances in brain tumor-targeted nano-drug delivery systems[J]. Expert Opin Drug Deliv, 2012, 9:671-86.
    Ashley C E, Carnes E C, Phillips G K, et al. The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers[J]. Nat Mater, 2011, 10:389-97.
    Florence AT. Targeting nanoparticles:the constraints of physical laws and physical barriers[J]. J Control Release, 2012, 164:115-24.
    Agarwal S, Sane R, Oberoi R, et al. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain[J]. Expert Rev Mol Med, 2011, 13:17.
    Brown SD, Nativo P, Smith Jo-Ann, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin[J]. J Am Chem Soc, 2010, 132:4678-84.
    Yallappa S, Manjanna J, Dhananjaya BL, et al. Phytosynthesis of gold nanoparticles using Mappia foetida leaves extract and their conjugation with folic acid for delivery of doxorubicin to cancer cells[J]. J Mater Sci:Mater Med, 2015, 26:235-47.
    Barbe C, Bartlett J, Kong L, et al. Silica particles:A novel drug-delivery system[J]. Adv Mater, 2004, 16:1959-66.
    Kunal B, Sourav P M, Audrey G, et al. Biological interactions of carbon-based nanomaterials:From coronation to degradation[J]. Nanomedicine, 2016, 12(2):333-351.
    Feng Y, Lee K, farhat H, et al. Current ON/OF ration enhancement of FETs with bundled CNTs[J]. J Appl Phys, 2009, 106(10):104505-09.
    Chun X G, Jiale X, Bin W, et al. A new class of fluorescent-dots:long luminescent lifetime bio-dots self-assembled from DNA at low temperatures[J]. Sci Rep, 2013, 3, 2957:1-6.
    Mou X, Ali Z, Li S, et al. Applications of magnetic nanoparticles in targeted drug delivery system[J]. J Nanosci Nanotechnol, 2015, 15(1):54-62.
    Xiao K, Luo J, Li Y, et al. PEG-oligocholic acid telodendrimer micelles for the targeted delivery of doxorubicin to B-cell lymphoma[J]. J Controlled Release, 2011, 155:272-81.
    Jaeyun K, Lan C, Dmitry S, et al.Targeted delivery of nanoparticles to ischemic muscle for imaging and therapeutic angiogenesis[J]. Nano Lett, 2011, 11:694-700.
    Cheng Z 1, Al Zaki A, Hui J Z, et al. Multifunctional nanoparticles:cost versus benefit of adding targeting and imaging capabilities[J]. Science, 2012, 338:903-10.
    Yu C, Hangrong C, Deping Z, et al. Core/shell structured hollow mesoporous nanocapsules:a potential platform for simultaneous cell imaging and anticancer drug delivery[J]. ACS Nano, 2010, 4:6001-13.
    Shihui W, Hui L, Hongdong C, et al. Drug delivery:targeted and pH-responsive delivery of doxorubicin to cancer cells using multifunctional dendrimer-modified multi-walled carbon nanotubes[J]. Adv Healthcare mater, 2013, 2:1267-76.
    Xinxing M, Huiquan T, Kai Y, et al. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging[J]. Nano Res, 2012, 5:199-212.
    Nanda G S, Hongqian B, Yongzheng P, et al. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug:a comparative study[J]. Chem. Commun, 2011, 47:5235-37.
    So Y P, Hyun U L, Eun S P, et al. Photoluminescent green carbon nanodots from food-waste-derived sources:Large-scale synthesis, properties, and biomedical applications[J]. ACS Appl Mater Interfaces, 2014, 6:3365-70.
    Wang L, Sun Q, Wang X, et al. Using hollow carbon nanospheres as a light-induced free radical generator to overcome chemotherapy resistance[J]. J Am Chem Soc, 2015, 137(5):1947-55.
    Zhang X B, Tong H W, Liu S M, et al. An improved St ber method towards uniform and monodisperse Fe3O4@C nanospheres[J]. J Mater Chem A, 2013, 1:7488-93.
    Pol VG, Motiei M, Gedanken A, et al. Carbon spherules:synthesis, properties and mechanistic elucidation[J]. Carbon, 2004, 42:111-116.
    Pei-Ying L, Chiung-Wen H, Mei-Lang K, et al. Eco-friendly synthesis of shrimp egg-derived carbon dots for fluorescent bioimaging[J]. J Biotech, 2014, 189:114-19.
    Daeun K, Yuri C, Eeseul S, et al. Sweet nanodot for biomedical imaging:carbon dot derived from xylitol[J]. RSC Adv, 2014, 4:23210-13.
    Manar SAA, Roy P, Sharma K V, et al. Catalyst-free synthesis of carbon nanospheres for potential biomedical applications:waste to wealth approach[J]. RSC Adv, 2015, 5:24528-33.
    Rafatullah M, Ahmad T, Ghazali A, et al. Oil palm biomass as a precursor of activated carbons:a review[J]. Crit Rev Environ Sci Technol, 2013, 43(11):1117-61.
    Hashim R, Nadhari WNAW, Sulaiman O, et al. Characterization of raw materials and manufactured binderless particles board from oil palm biomass[J]. Mater Des, 2011, 32:246-254.
    Wang J T, Chen C, Wang E, et al. A new carbon allotrope with six-fold helical chain in all sp2 bonding networks[J]. Sci Rep, 2014, 4:4339-44.
    Krishnamurthy G, Namitha R. Synthesis of structurally novel carbon micro/nanospheres by low temperature-hydrothermal process[J]. J Chil Chem Soc, 2013, 58(3):1930-33.
    Panagiotis T, Thomas F F, Peter S. Carbon as catalyst and support for electrochemical energy conversion[J]. Carbon, 2014, 75:5-42.
    Galeener F L, Sen P N. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions[J]. Phys Rev B, 1978, 17:1928.
    Hussain N, Jaitley V, Florence AT. Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics[J]. Adv Drug Deliv Rev, 2001, 50:107-42.
    Choi C H, Alabi C A, Webster P, et al. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles[J]. Proc Natl Acad Sci USA, 2010, 107:1235-40.
    Kirpotin D B, Drummond D C, Shao Y, et al. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models[J]. Cancer Res, 2006, 66:6732-40.
    Hyun U L, So Y P, Eun S P, et al. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells[J]. Sci Rep, 2014, 4:4665-72.
  • 加载中
图(1)
计量
  • 文章访问数:  354
  • HTML全文浏览量:  66
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-30
  • 录用日期:  2018-04-28
  • 修回日期:  2018-04-02
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回