留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

炭纤维作为EM生物膜载体优化除污效果的应用研究

安永真 王春华 苗朋 王晓旭 梁节英 刘杰

安永真, 王春华, 苗朋, 王晓旭, 梁节英, 刘杰. 炭纤维作为EM生物膜载体优化除污效果的应用研究. 新型炭材料, 2018, 33(2): 188-192. doi: 10.1016/S1872-5805(18)60334-8
引用本文: 安永真, 王春华, 苗朋, 王晓旭, 梁节英, 刘杰. 炭纤维作为EM生物膜载体优化除污效果的应用研究. 新型炭材料, 2018, 33(2): 188-192. doi: 10.1016/S1872-5805(18)60334-8
AN Yong-zhen, WANG Chun-hua, MIAO Peng, WANG Xiao-xu, LIANG Jie-ying, LIU Jie. Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms. New Carbon Mater., 2018, 33(2): 188-192. doi: 10.1016/S1872-5805(18)60334-8
Citation: AN Yong-zhen, WANG Chun-hua, MIAO Peng, WANG Xiao-xu, LIANG Jie-ying, LIU Jie. Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms. New Carbon Mater., 2018, 33(2): 188-192. doi: 10.1016/S1872-5805(18)60334-8

炭纤维作为EM生物膜载体优化除污效果的应用研究

doi: 10.1016/S1872-5805(18)60334-8
基金项目: 国家自然科学基金(51073011).
详细信息
    作者简介:

    安永真,硕士.E-mail:nyongzhen1991@163.com

    通讯作者:

    刘杰,教授.E-mail:liuj@mail.buct.edu.cn

  • 中图分类号: TQ127.1+1

Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms

Funds: National Natural Science Foundation of China (51073011).
  • 摘要: 以EM菌作为微生物来源,在相同条件下分别采用涤纶、维纶、未处理的炭纤维以及经电化学表面处理的炭纤维作为载体培养生物膜,通过废水中COD、TN、TP各指标的测定比较在不同时期各EM生物膜的除污效果。结果表明,炭纤维作为EM生物膜载体能明显优化除污效果,其中电化学处理后的炭纤维作为载体的EM生物膜系统稳定期对COD、TN、TP的平均去除率能够分别达到97.1%、92.5%、96.0%,相对有机高分子类载体系统提升5%~67%,且对外界环境的变化有很强的适应性。
  • Narendrakumar G, Kumar J A. Evaluation of effective microorganism (EM) for treatment of domestic sewage[J]. Journal of Experimental Sciences, 2011, 2(7):30-32.
    Sigstad E E, Schabes F I, Tejerina F. A calorimetric analysis of soil treated with effective microorganisms[J]. Thermochimica Acta, 2013, 569:139-143.
    Javaid A, Bajwa R. Effect of effective microorganism application on crop growth, yield, and nutrition in vigna radiate (L.) wilczek in different soil amendment systems[J]. Communications in Soil Science and Plant Analysis, 2011, 42(17):2112-2121.
    Jiang H B, Cai J, et al. Mechanism and application of effective microorganisms (EM) in aquaculture[J]. Water Purification Technology, 2014, 33(6):28-32.
    Li C H, Shi Y. The influences of EM microbial organic fertilizer on soil microbial biomass carbon and urease activity in phyllostachys heterocycla plantation[J]. China Forestry Science and Technology, 2013, 27(6):56-58.
    Xu J J, Shao X H. Influence of EM dosage and amount of aeration on purification of aquaculture wastewater[J]. Water Resources Protection, 2013, 29(5):69-72.
    Ehab M R, Mohamed M. The effect of effective microorganisms (EM) on EBPR in modified contact stabilization system[J]. HBRC Journal, 2014, 1-9.
    Emad A S. Prospect of effective microorganism technology in wastes treatment in Egypt[J]. Asian Pacific Journal of Tropical Biomedicine, 2011, 1(3):243-248.
    Lv L, Yin C H, Xu Q Q. Cyanobacterial bloom control by environmental effective microorganisms[J]. Environmental Science & Technology, 2010, 8(33):1-5.
    Matsumoto S, Ohtaki A, Hori K. Carbon fiber as an excellent support material for wastewater treatment biofilm[J]. Environmental Science & Technology, 2012, 46:10175-10181.
    Smith K M, Fowler G D, Pullket S, et al. Sewage sludge-based adsorbents:A review of their production, properties and use in water treatment applications[J]. Water Research, 2009, 43:2569-2594.
    Ma Z K, Liu J. Application of carbon fiber as biofilm carriers in denitrification[J]. China Environmental Science, 2003, 23(3):247-250.
    Bouchez T, Patureau D, Dabert P, et al. Ecological study of a bioaugmentation failure[J]. Environmental Microbiology, 2000, 2(2):179-190.
    Alves C F, Melo L F, Vieira M J. Influence of medium composition on the characteristics of a denitrifying biofilm formed by alcaligenes denitrificans in a fluidised bed reactor[J]. Process Biochem, 2002, 37(8):837-845.
    Ting A S Y, Rahman N H A, et al. Investigating metal removal potential by effective microorganisms (EM) in alginate-immobilized and free-cell forms[J]. Bioresource Technology, 2013, 147:636-639.
    Liu J, Bai Y X, Tian Y L. Effect of the process of electrochemical modification on the surface structure and properties of PAN-based carbon fibers[J]. Acta Materiae Compositae Sinica, 2012, 29(2):16-25.
    Castilla C M, Toledo I B, Ferro-Garcia M A. Influence of support surface properties on activity of bacteria immobilised on activated carbons for water denitrification[J]. Carbon, 2003, 41:1743-1749.
    Renner L D, Weibel D B. Physicochemical regulation of biofilm formation[J]. MRS Bulletin, 2011, 36(5):347-355.
    Zhou Q Y, Gao T Y. Microbiology of Environmental Engineering[M]. Beijing:Higher Education Press, 2000:210-212.
    Qi H Y, Wang W B, Zheng Y. Mechanism of biofilm formation and analysis of influencing factors[J]. Microbiology China, 2013, 40(4):677-685.
    Liu Y, Zhao Q L, Zheng X H. Biofilm Wastewater Treatment Technology[M], Beijing:China Architecture & Building Press, 2000:22-23.
    Sun S P, Hatton T A, Chung T S. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin[J]. Environmental Science & Technology, 2011, 45(5):4003-4009.
    Flemming H C, Wingender J. The biofilm matrix[J]. Nature Reviews Microbiology, 2010, 8(9):623-633.
  • 加载中
图(1)
计量
  • 文章访问数:  409
  • HTML全文浏览量:  112
  • PDF下载量:  368
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-27
  • 录用日期:  2018-04-28
  • 修回日期:  2018-04-10
  • 刊出日期:  2018-04-28

目录

    /

    返回文章
    返回