留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质莲杆废弃物制备高比表面积多孔炭及其CO2吸附性能

吴星星 张乘云 田忠卫 蔡进军

吴星星, 张乘云, 田忠卫, 蔡进军. 生物质莲杆废弃物制备高比表面积多孔炭及其CO2吸附性能. 新型炭材料, 2018, 33(3): 252-261. doi: 10.1016/S1872-5805(18)60338-5
引用本文: 吴星星, 张乘云, 田忠卫, 蔡进军. 生物质莲杆废弃物制备高比表面积多孔炭及其CO2吸附性能. 新型炭材料, 2018, 33(3): 252-261. doi: 10.1016/S1872-5805(18)60338-5
WU Xing-xing, ZHANG Cheng-yun, TIAN Zhong-wei, CAI Jin-jun. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture. New Carbon Mater., 2018, 33(3): 252-261. doi: 10.1016/S1872-5805(18)60338-5
Citation: WU Xing-xing, ZHANG Cheng-yun, TIAN Zhong-wei, CAI Jin-jun. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture. New Carbon Mater., 2018, 33(3): 252-261. doi: 10.1016/S1872-5805(18)60338-5

生物质莲杆废弃物制备高比表面积多孔炭及其CO2吸附性能

doi: 10.1016/S1872-5805(18)60338-5
基金项目: 国家自然科学基金(21506184);湖南省教育厅项目(16C1536);研究生创新项目(CX2017B335);SWMES教育部重点实验室开放基金(SWMES2015-15);湖南省环境保护厅科技项目(湘财[2016]59号);"环境友好与资源高效利用化工新技术"湖南省2011协同创新中心资助项目.
详细信息
    作者简介:

    吴星星,硕士研究生.E-mail:121244806@qq.com

    通讯作者:

    蔡进军,博士,副教授.E-mail:caijj@xtu.edu.cn

  • 中图分类号: X712

Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture

Funds: National Natural Science Foundation of China (21506184); Education Department of Hunan Province (16C1536); Project of Postgraduate Research Innovation of Hunan Province (CX2017B335); SWMES Key Lab Foundation of Tsinghua University, Ministry of Education of China (SWMES2015-15); Foundation of Environmental Protection Science and Technology of Hunan Province ([2016]59); Hunan 2011 Collaborative Innovation Center of Chemical Engineering with Environmental Benignity and Effective Resource Utilization.
  • 摘要: 采用水热炭化和KOH活化相结合的方法,以生物质莲杆废弃物为碳源,制备了高比表面积多孔炭材料,并探索其CO2吸附性能。分别采用氮气物理吸附、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和元素分析技术(XPS)对这种莲杆基多孔炭材料的孔道结构、形貌和表面化学等特性进行了研究。结果表明,KOH浓度对莲杆基多孔炭材料的孔结构具有较大影响,莲杆基多孔炭材料的比表面积和孔体积分别为2 893 m2/g和1.59 cm3/g,KOH活化处理能在增大多孔炭材料的比表面积和孔体积,同时会在其内部形成部分具有较大尺寸的微孔和较小尺寸的介孔结构。在常压条件下,CO2的吸附测试表明莲杆基多孔炭材料在25℃和0℃时的吸附量分别高达3.85和6.17 mmol/g,这一吸附量在生物质基多孔炭材料中属于较高水平。然而,具有最高比表面积的莲杆基多孔炭材料(AC-4样品)并不具备最高的CO2吸附量,这意味着常压条件下限制CO2吸附量的决定性因素并不是比表面积,而主要由微孔率和孔径分布决定。这一研究结果为设计多孔吸附剂应用于CO2捕集方面提供了重要意义,也为构建低成本且环境友好的具有高吸附量的CO2吸附剂提供思路。
  • Yang G, Ye J, Yan J, et al. Preparation and CO2 adsorption properties of porous carbon from camphor leaves by hydrothermal carbonization and sequential potassium hydroxide activation[J]. RSC Advances, 2017, 7:4152-4160.
    Cai J, Qi J, Yang C, et al. Poly(vinylidene chloride)-based carbon with ultrahigh micro-porosity and outstanding performance for CH4 and H2 storage and CO2 capture[J]. ACS Applied Materials & Interfaces, 2014, 6:3703-3711.
    Tang Z, Han Z, Yang G, et al. Preparation of nanoporous carbons with hierarchical pore structure for CO2 capture[J]. New Carbon Materials, 2013, 28:55-60.
    D'Alessandro D M, Smit B, Long J R. Carbon dioxide capture:prospects for new materials[J]. Angewandte Chemie-International Edition, 2010, 49:6058-6082.
    MacDowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3:1645-1669.
    Lu A H, Hao G P. Porous materials for carbon dioxide capture[J]. Annual Reports Section "A" (Inorganic Chemistry), 2013, 109:484-503.
    Fu R W, Li Z H, Liang Y R, et al. Hierarchical porous carbons:design, preparation, and performance in energy storage[J]. New Carbon Materials, 2011, 26:171-179.
    Yang M, Guo L, Hu G, et al. Adsorption of CO2 by petroleum coke nitrogen-doped porous carbons synthesized by combining ammoxidation with KOH activation[J]. Industrial & Engineering Chemistry Research, 2016, 55:757-765.
    Sevilla M, Parra J B, Fuertes A B. Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons[J]. ACS Applied Materials & Interfaces, 2013, 5:6360-6368.
    Zhang Z, Zhou J, Xing W, et al. Critical role of small micropores in high CO2uptake[J]. Physical Chemistry Chemical Physics, 2013, 15:2523-2529.
    Li Y, Li D, Rao Y, et al. Superior CO2, CH4, and H2 uptakes over ultrahigh-surface-area carbon spheres prepared from sustainable biomass-derived char by CO2 activation[J]. Carbon, 2016, 105:454-462.
    Wei H, Chen H, Fu N, et al. Excellent electro-chemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells[J]. Electrochimical Acta, 2017, 231:403-411.
    Singh G, Kim I Y, Lakhi K S, et al. Single step synthesis of activated bio-carbons with a high surface area and their excellent CO2 adsorption capacity[J]. Carbon, 2017, 116:448-455.
    Zhu X L, Wang P Y, Peng C, et al. Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents[J]. Chinese Chemical Letters, 2014, 25:929-932.
    Yahya M A, Al-Qodah Z, Ngah C W Z. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production:A review[J]. Renewable and Sustainable Energy Reviews, 2015, 46:218-235.
    Tekin K, Karagöz S, Bektas S. A review of hydrothermal biomass processing[J]. Renewable and Sustainable Energy Reviews, 2014, 40:673-687.
    Wang J, Nie P, Ding B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5:2411-2428.
    Gao Z, Zhang Y, Song N, et al. Biomass-derived renewable carbon materials for electrochemical energy storage[J]. Materials Research Letters, 2017, 5:69-88.
    Ello A S, de Souza L K C, Trokourey A, et al. Coconut shell-based microporous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2013, 180:280-283.
    Li K, Tian S, Jiang J, et al. Pine cone shell-based activated carbon used for CO2 adsorption[J]. Journal of Materials Chemistry A, 2016, 4:5223-5234.
    Boyjoo Y, Cheng Y, Zhong H, et al. From waste Coca Cola to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors[J]. Carbon, 2017, 116:490-499.
    Tian Z, Qiu Y, Zhou J, et al. The direct carbonization of algae biomass to hierarchical porous carbons and CO2 adsorption properties[J]. Materials Letters, 2016, 180:162-165.
    Wu X, Tian Z, Hu L, et al. Macroalgae-derived nitrogen-doped hierarchical porous carbons with high performance for H2 storage and supercapacitors[J]. RSC Advances, 2017, 7:32795-32805.
    Tian Z, Xiang M, Zhou J, et al. Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass:direct carbonization and excellent electrochemical properties[J]. Electrochimical Acta, 2016, 211:225-233.
    Wang X, Wang M, Zhang X, et al. Low-cost, green synthesis of highly porous carbons derived from lotus root shell as superior performance electrode materials in supercapacitor[J]. Journal of Energy Chemistry, 2016, 25:26-34.
    Liu B, Zhou X, Chen H, et al. Promising porous carbons derived from lotus seedpods with outstanding supercapacitance performance[J]. Electrochimical Acta, 2016, 208:55-63.
    Zhang Y, Liu S, Zheng X, et al. Biomass organs control the porosity of their pyrolyzed carbon[J]. Advanced Functional Materials, 2017, 27:1604687.
    Sun W, Lipka S M, Swartz C, et al. Hemp-derived activated carbons for supercapacitors[J]. Carbon, 2016, 103:181-192.
    Wang K, Zhao N, Lei S, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochimical Acta, 2015, 166:1-11.
    Wang R, Wang P, Yan X, et al. Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance[J]. ACS Applied Materials & Interfaces, 2012, 4:5800-5806.
    Yu W, Wang H, Liu S, et al. N, O-codoped hierarchical porous carbons derived from algae for high-capacity supercapacitors and battery anodes[J]. Journal of Materials Chemistry A, 2016, 4:5973-5983.
    Xing W, Liu C, Zhou Z, et al. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons[J]. Nanoscale Research Letters, 2014, 9:189.
    Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4:1765-1771.
    Sevilla M, Fuertes A B, Mokaya R. Preparation and hydrogen storage capacity of highly porous activated carbon materials derived from polythio-phene[J]. International Journal of Hydrogen Energy, 2011, 36:15658-15663.
    Deng S, Wei H, Chen T, et al. Superior CO2 adsorption on pine nut shell-derived activated carbons and the effective micropores at different temperatures[J]. Chemical Engineering Journal, 2014, 253:46-54.
    Liu L, Xu S D, Wang F Y, et al. Nitrogen-doped carbon materials with cubic ordered mesostructure:low-temperature autoclaving synthesis for electrochemical supercapacitor and CO2 capture[J]. RSC Advances, 2017, 7:12524-12533.
    Wang L, Yang R T, Significantly increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping[J]. The Journal of Physical Chemistry C, 2011, 116:1099-1106.
    Wang J, Senkovska I, Oschatz M, et al. Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture[J]. Journal of Materials Chemistry A, 2013, 1:10951-10961.
    Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133:11378-11388.
    Pan Y, Xue M, Chen M, et al. ZIF-derived in situ nitrogen decorated porous carbons for CO2 capture[J]. Inorganic Chemistry Frontiers, 2016, 3:112-1118.
    Luo H, Zhu C C, Tan Z C, et al. Preparation of N-doped activated carbons with high CO2 capture performance from microalgae (Chloro-coccum sp.)[J]. RSC Advances, 2016, 6:38724-38730.
    Bezerra D P, Oliveira R S, Vieira R S, et al. Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X[J]. Adsorption, 2011, 17:235-246.
    Zhou J, Li W, Zhang Z, et al. Carbon dioxide adsorption performance of N-doped zeolite Y templated carbons[J]. RSC Advances, 2012, 2:161-167.
    Mahurin S M, Górka J, Nelson K M, et al. Enhanced CO2/N2 selectivity in amidoxime-modified porous carbon[J]. Carbon, 2014, 67:457-464.
    Yuan B, Wu X, Chen Y, et al. Adsorption of CO2, CH4, and N2 on ordered mesoporous carbon:approach for greenhouse gases capture and biogas upgrading[J]. Environmental Science & Technology, 2013, 47:5474-5480.
  • 加载中
图(1)
计量
  • 文章访问数:  402
  • HTML全文浏览量:  83
  • PDF下载量:  246
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-15
  • 录用日期:  2018-06-26
  • 修回日期:  2018-06-03
  • 刊出日期:  2018-06-28

目录

    /

    返回文章
    返回