留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米CaCO3模板法合成石油沥青基多孔类石墨烯炭材料

刘明杰 魏风 杨雪梅 董仕安 李英杰 何孝军

刘明杰, 魏风, 杨雪梅, 董仕安, 李英杰, 何孝军. 纳米CaCO3模板法合成石油沥青基多孔类石墨烯炭材料. 新型炭材料, 2018, 33(4): 316-323. doi: 10.1016/S1872-5805(18)60342-7
引用本文: 刘明杰, 魏风, 杨雪梅, 董仕安, 李英杰, 何孝军. 纳米CaCO3模板法合成石油沥青基多孔类石墨烯炭材料. 新型炭材料, 2018, 33(4): 316-323. doi: 10.1016/S1872-5805(18)60342-7
LIU Ming-jie, WEI Feng, YANG Xue-mei, DONG Shi-an, LI Ying-jie, HE Xiao-jun. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template. New Carbon Mater., 2018, 33(4): 316-323. doi: 10.1016/S1872-5805(18)60342-7
Citation: LIU Ming-jie, WEI Feng, YANG Xue-mei, DONG Shi-an, LI Ying-jie, HE Xiao-jun. Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template. New Carbon Mater., 2018, 33(4): 316-323. doi: 10.1016/S1872-5805(18)60342-7

纳米CaCO3模板法合成石油沥青基多孔类石墨烯炭材料

doi: 10.1016/S1872-5805(18)60342-7
基金项目: 国家自然科学基金(1361110,1710116).
详细信息
    作者简介:

    刘明杰,学士.E-mail:947514654@qq.com

    通讯作者:

    何孝军,教授.E-mail:agdxjhe@126.com

  • 中图分类号: TQ127.1+1

Synthesis of porous graphene-like carbon materials for high-performance supercapacitors from petroleum pitch using nano-CaCO3 as a template

Funds: National Natural Science Foundation of China (1361110, 1710116).
  • 摘要: 利用纳米CaCO3模板耦合原位KOH活化方法合成出超级电容器用多孔类石墨烯炭材料(PGCMs)。采用透射电子显微镜、拉曼光谱、X射线光电子能谱和N2吸脱附技术对PGCMs进行了表征。结果表明,PGCMs的比表面积为1 542~2 305 m2 g-1,其取决于模板、KOH/沥青的比例和活化温度。当模板/沥青比为1.5、KOH/沥青比为1.5,在850℃恒温1 h所得PGCM的超电容性能最佳。同时,PGCMs具有相互连接的类石墨烯炭层和丰富的分级短孔。在6 M KOH电解液中,0.05 A g-1电流密度下,超级电容器用PGCMs电极的比容高达293 F g-1;在20 A g-1电流密度下,其电容保持为231 F g-1,显示了良好的倍率性能;经7 000次循环充放电后,其电容保持率为97.4%,展现了优异的循环稳定性。此外,在BMIMPF6离子液体电解液中,0.05 A g-1电流密度下,PGCMs电极的比容高达267 F g-1。PGCMs超级电容器的能量密度达148.3 Wh kg-1,其相应的平均功率密度为204.2 W kg-1。本工作为利用廉价的纳米CaCO3模板合成高性能超级电容器用石油沥青基多孔类石墨烯炭材料提供了一种可行的方法。
  • Lu X L, Yu M H, Wang G M, et al. Flexible solid-state supercapacitors:design, fabrication and applications[J]. Energy Environ Sci, 2014, 7:2160-2181.
    Wang G P, Zhang L, Zhang J J. A review of electrode materials for electrochemical supercapacitors[J]. Chem Soc Rev, 2012, 41:797-828.
    Deng Y F, Xie Y, Zou K X, et al. Review on recent advances in nitrogen-doped carbons:preparations and applications in supercapacitors[J]. J Mater Chem A, 2016, 4:1144-1173.
    Liu L L, Niu Z Q, Chen J, et al. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations[J]. Chem Soc Rev, 2016, 45:4340-4363.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Materials Letters, 2015, 157:273-276.
    Ghosh A, Lee Y H. Carbon-based electrochemical capacitors[J]. ChemSusChem, 2012, 5:480-499.
    Yu Z N, Tetard L, Zhai L, et al. Supercapacitor electrode materials:nanostructures from 0 to 3 dimensions[J]. Energy Environ Sci, 2015, 8:702-730.
    Zhang L, Yang X, Zhang F, et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials[J]. J Am Chem Soc, 2013, 135:5921-5929.
    Jiménez-Cordero D, Heras F, Gilarranz M, et al. Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes[J]. Carbon, 2014, 71:127-138.
    Xu B, Wang H, Yu S K. Hierarchical porous carbon prepared using nano-ZnO as template and activation agent for ultrahigh power supercapacitors[J]. Chem Commun, 2016, 52:11512-11515.
    Fuertes A, Sevilla M. High-surface area carbons from renewable sources with a bimodal micro-mesoporosity for high performance ionic liquid-based supercapacitors[J]. Carbon, 2015, 94:41-52.
    WANG Mei, JIA Xian-feng, MA Cheng, et al. Adsorption and desorption behavior of benzene and toluene on porous carbon monoliths[J]. New Carbon Materials, 2017, 32:358-364.
    Dong X L, Lu A H, He B, et al. Highly microporous carbons derived from a complex of glutamic acid and zinc chloride for use in supercapacitors[J]. J Power Sources, 2016, 327:535-542.
    Liu H J, Wang J, Wang C X, et al. Ordered hierarchical mesoporous/microporous carbon derived from mesoporous titanium-carbide/carbon composites and its electrochemical performance in supercapacitor[J]. Adv Energy Mater, 2011, 1:1101-1108.
    He X J, Zhao N, Qiu J S, et al. Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3as template and activation agent coupled with KOH activation[J]. J Mater Chem A, 2013, 1:9440-9448.
    Gao F, Qu J Y, Geng C, et al. Self-templating synthesis of nitrogen-decorated hierarchical porous carbon from shrimp shell for supercapacitors[J]. J Mater Chem A, 2016, 4:7445-7452.
    Zhang J B, Jin L J, Cheng J, et al. Hierarchical porous carbons prepared from direct coal liquefaction residue and coal for supercapacitor electrodes[J]. Carbon, 2013, 55:221-232.
    He X J, Zhang H B, Zhang H, et al. Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J Mater Chem A, 2014, 2:19633-19640.
    Wang J H, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. J Mater Chem A, 2012, 22:23710-23725.
    He X J, Zhang N, Shao X L, et al. A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chem Eng J, 2016, 2:639-659.
    He X J, Li R C, Qiu J S, et al. Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50:4911-4921.
    Nishihara H, Kyotani T. Templated nanocarbons for energy storage. Adv Mater, 2012, 24:4473-4498.
    Zhao C R, Wang W K, Yu Z B, et al. Nano-CaCO3 as template for preparation of disordered large mesoporous carbon with hierarchical porosities[J]. J Mater Chem, 2010, 20:976-980.
    He W D, Wang C G, Zhuge F W, et al. Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes[J]. Nano Energy, 2017, 35:242-250.
    Bu Y F, Sun T, Cai Y J, et al. Compressing carbon nanocages by capillarity for optimizing porous structures toward ultrahigh-volumetric-performance supercapacitor[J]. Adv Mater, 2017, 29:1700470.
    Zhu H, Wang X L, Liu X X, et al. Integrated synthesis of poly(o-phenylenediamine)-derived carbon materials for high performance supercapacitors[J]. Adv Mater, 2012, 24:6524-6529.
    Huang H, Wang Q, Chen X Y, et al. The effects of amine/nitro/hydroxyl groups on the benzene rings of redox additives on the electrochemical performance of carbon-based supercapacitors[J]. Phys Chem Chem Phys, 2016, 18:10438-10452.
    Li Z, Xu Z W, Tan X H, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy Environ Sci, 2013, 6:871-878.
    Li C, Zhang X, Wang K, et al. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability[J]. Adv Mater, 2017, 29:1604690.
    Lin W, Xu B, Liu L. Hierarchical porous carbon prepared by NaOH activation of nano-CaCO3 templated carbon for high rate supercapacitors[J]. New J Chem, 2014, 38:5509-5514.
    Chen Z, Wen J, Yan C Z, et al. High-performance supercapacitors based on hierarchically porous graphite particles[J]. Adv Energy Mater, 2011, 1:551-556.
    Lin Z Y, Liu Y, Yao Y G, et al. Superior capacitance of functionalized graphene[J]. J Phys Chem C, 2011, 115:7120-7125.
    Yan J, Wang Q, Wei T, et al. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities[J]. Adv Energy Mater, 2014, 4:1300816.
    Li J H, Shao Y L, Shi Q W, et al. Calligraphy-inspired brush written foldable supercapacitors[J]. Nano Energy, 2017, 38:428-437.
    Jiang Y T, Yan J, Wu X L, et al. Facile synthesis of carbon nanofibers-bridged porous carbon nanosheets for high-performance supercapacitors[J]. J Power Sources, 2016, 307:190-198.
    Wang G, Qian B Q, Wang Y W, et al. Electrospun porous hierarchical carbon nanofibers with tailored structures for supercapacitors and capacitive deionization[J]. New J Chem, 2016, 40:3786-3792.
    Qu J Y, Geng C, Lv S Y, et al. Nitrogen, oxygen and phosphorus decorated porous carbons derived from shrimp shells for supercapacitors[J]. Electrochim Acta, 2015, 176:982-988.
    Miao F J, Shao C L, Li X H, et al. Three-dimensional freestanding hierarchically porous carbon materials as binder-free electrodes for supercapacitors:high capacitive property and long-term cycling stability[J]. J Mater Chem A, 2016, 4:5623-5631.
    An Y F, Yang Y Y, Hu Z A, et al. High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate[J]. J Power Sources, 2017, 337:45-53.
    Liu D, Zeng C, Qu D Y, et al. Highly efficient synthesis of ordered nitrogen-doped mesoporous carbons with tunable properties and its application in high performance supercapacitors[J]. J Power Sources, 2016, 321:143-154.
    Ma F W, Ma D, Wu G, et al. Construction of 3D nanostructure hierarchical porous graphitic carbons by charge-induced self-assembly and nanocrystal-assisted catalytic graphitization for supercapacitors[J]. Chem Commun, 2016, 52:6673-6676.
    Kim B, Kim C H. Zinc oxide/activated carbon nanofiber composites for high-performance supercapacitor electrodes[J]. J Power Sources, 2015, 274:512-520.
    You B, Kang F, Yin P Q, et al. Hydrogel-derived heteroatom-doped porous carbon networks for supercapacitor and electrocatalytic oxygen reduction[J]. Carbon, 2016, 103:9-15.
    Wang X W, Liu Y, Wu P Y. Water-soluble triphenylphosphine-derived microgel as the template towards in-situ nitrogen, phosphorus co-doped mesoporous graphene framework for supercapacitor and electrocatalytic oxygen reduction[J]. Chem Eng J, 2017, 328:417-427.
    Pu J, Li C W, Tang L, et al. Impregnation assisted synthesis of 3D nitrogen-doped porous carbon with high capacitance[J]. Carbon, 2015, 94:650-660. 《新型炭材料》荣获第四届中国政府出版奖近日,国家新闻出版广电总局评选出第四届中国政府出版奖,《新型炭材料》榜上有名。中国政府出版奖是国家为做强精品,加强传播能力建设,在全国出版行业评选出的一批优秀出版物,是我国最高出版奖。本次获奖,已是《新型炭材料》连续两届荣膺该奖项。《新型炭材料》近年来秉承为中国炭材料研究当好桥梁和窗口的宗旨,追踪学科前沿,刊发优质学术文章,致力于打造精品学术期刊。
  • 加载中
图(1)
计量
  • 文章访问数:  609
  • HTML全文浏览量:  151
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-01
  • 录用日期:  2018-08-30
  • 修回日期:  2018-08-01
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回