留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一步法合成N,S共掺杂荧光碳量子点及其检测汞离子性能

魏居孟 刘碧桃 张欣 宋常春

魏居孟, 刘碧桃, 张欣, 宋常春. 一步法合成N,S共掺杂荧光碳量子点及其检测汞离子性能. 新型炭材料, 2018, 33(4): 333-340. doi: 10.1016/S1872-5805(18)60343-9
引用本文: 魏居孟, 刘碧桃, 张欣, 宋常春. 一步法合成N,S共掺杂荧光碳量子点及其检测汞离子性能. 新型炭材料, 2018, 33(4): 333-340. doi: 10.1016/S1872-5805(18)60343-9
WEI Ju-meng, LIU Bi-tao, ZHANG Xin, SONG Chang-chun. One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Mater., 2018, 33(4): 333-340. doi: 10.1016/S1872-5805(18)60343-9
Citation: WEI Ju-meng, LIU Bi-tao, ZHANG Xin, SONG Chang-chun. One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection. New Carbon Mater., 2018, 33(4): 333-340. doi: 10.1016/S1872-5805(18)60343-9

一步法合成N,S共掺杂荧光碳量子点及其检测汞离子性能

doi: 10.1016/S1872-5805(18)60343-9
基金项目: 安徽科技学院引进人才项目基金(ZRC2014448);安徽科技学院重点学科基金(AKZDXK2015A01);环境材料与修复技术重庆市重点实验室开放课题基金(CEK1502).
详细信息
    通讯作者:

    宋常春.E-mail:lzu_alice@163.com

  • 中图分类号: TQ127.1+1

One-pot synthesis of N, S co-doped photoluminescent carbon quantum dots for Hg2+ ion detection

Funds: Talent Introduction Foundation of Anhui Science and Technology of University (ZRC2014448); Key Discipline Foundation of Anhui Science and Technology of University (AKZDXK2015A01); Open Foundation of Chongqing Key Laboratory of Environmental & Remediation Technologies (CEK1502).
  • 摘要: 采用简单一步水热法合成了高荧光量产率(FLQY,12.6%)的N,S共掺杂碳量子点(N,S-CQDs)。该碳量子点具有小的粒径,无定型结构,独特的表面态和依赖于激发光的荧光特性。N和S的共掺杂促进了N,S-CQDs和Hg2+离子之间的电子传递和协调相互作用。结果表明,该N,S共掺杂碳量子点在湖水中检测Hg2+离子展现出了较高的灵敏度和选择性。因此,该碳量子点作为荧光探针在环境监测中具有很好的应用前景。
  • Yang X, Wang E. A nanoparticle autocatalytic sensor for Ag+ and Cu2+ ions in aqueous solution with high sensitivity and selectivity and its application in test paper[J]. Analytical Chemistry, 2011, 83(12):5005-5011.
    Zhitkovich A. Chromium in drinking water:Sources, metabolism, and cancer risks[J]. Chemical Research in Toxicology, 2011, 24(10):1617-1629.
    Yang Y, Jing L, Yu X, et al. Coating aqueous quantum dots with silica via reverse microemulsion method:Toward size-controllable and robust fluorescent nanoparticles[J]. Chemistry of Materials, 2007, 19(17):4123-4128.
    Bera K, Das A K, Nag M, et al. Development of a rhodamine-rhodanine-based fluorescent mercury sensor and its use to monitor real-time uptake and distribution of inorganic mercury in live zebrafish larvae[J]. Analytical Chemistry, 2014, 86(5):2740-2746.
    Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion[J]. Chemical Reviews, 2008, 108(9):3443-3480.
    Baughman T A. Elemental mercury spills[J]. Environ Health Perspect, 2006, 114(2):147-152.
    Kim H N, Ren W X, Kim J S, et al. Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions[J]. Chemical Society Reviews, 2012, 41(8):3210-3244.
    Aragay G, Pons J. A. Merkoci, recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection[J]. Chemical Reviews, 2011, 111(5):3433-3458.
    YangY-K, Yook K-J, Tae J. A Rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. Journal of the American Chemical Society, 2005, 127(48):16760-16761.
    Ngu P Z Z, Chia S P P, Fong J F Y, et al. Synthesis of carbon nanoparticles from waste rice husk used for the optical sensing of metal ions[J]. New Carbon Materials, 2016, 31(2):135-143.
    Wang C, Zhang D, Huang X, et al. A ratiometric fluorescent chemosensor for Hg2+ based on FRET and its application in living cells[J]. Sensors and Actuators B:Chemical, 2014, 198(3):33-40.
    Mohapatra S, Sahu S, Sinha N, et al. Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+ in water and living cells[J]. Analyst, 2015, 140(4):1221-1228.
    Wei J, Zhang X, Sheng Y, et al. Dual functional carbon dots derived from cornflour via a simple one-pot hydrothermal route[J]. Materials Letters, 2014, 123(10):107-111.
    Zheng M, Xie Z, Qu D, et al. On-off-on fluorescent carbon dot nanosensor for recognition of chromium(VI) and ascorbic acid based on the inner filter effect[J]. ACS Applied Materials & Interfaces, 2013, 5(24):13242-13247.
    Xu Q, Pu P, Zhao J, et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(Ⅲ) detection[J]. Journal of Materials Chemistry A, 2015, 3(2):542-546.
    Xue M, Zhang L, Zou M, et al. Nitrogen and sulfur co-doped carbon dots:A facile and green fluorescence probe for free chlorine[J]. Sensors and Actuators B:Chemical, 2015, 219:50-56.
    Xu Q, Liu Y, Gao C, et al. Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots[J]. Journal of Materials Chemistry C, 2015, 3(38):9885-9893.
    Hu C,Yu C, Li M, Wang X, et al. Chemically tailoring coal to fluorescent carbon dots with tuned size and their capacity for Cu(Ⅱ) eetection[J]. Small, 2014, 10(23):4926-4933.
    Li M, Hu C,Yu C, et al. Organic amine-grafted carbon quantum dots with tailored surface and enhanced photoluminescence properties[J]. Carbon, 2015, 91:291-297.
    Hu C, Yu C, Li M, et al. Nitrogen-doped carbon dots decorated on graphene:a novel all-carbon hybrid electrocatalyst for enhanced oxygen reduction reaction[J]. Chemical Communications, 2015, 51:3419-3422.
    Wang Y, Kim S H, Feng L. Highly luminescent N, S-Co-doped carbon dots and their direct use as mercury(Ⅱ) sensor[J]. Analytica Chimica Acta, 2015, 890:134-142.
    Sun Y, Shen C, Wang J, et al. Facile synthesis of biocompatible N, S-doped carbon dots for cell imaging and ion detecting[J]. RSC Advances, 2015, 5(21):16368-6375.
    De B and Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice[J]. RSC Advances, 2013, 3(22):8286-8290.
    Peng J, Gao W, Gupta B K, et al. Graphene quantum dots derived from carbon fibers[J]. Nano Letters, 2012, 12(2):844-849.
    Zeng Y W, Ma D K, Wang W, et al. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids[J]. Applied Surface Science, 2015, 342:136-143.
    Liu J, Liu X, Luo H, et al. One-step preparation of nitrogen-doped and surface-passivated carbon quantum dots with high quantum yield and excellent optical properties[J]. RSC Advances, 2014, 4(15):7648-7654.
    Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts[J]. Nanoscale, 2013, 5(24):12272-12277.
    Kundu S, Yadav R M, Narayanan T N, et al. Synthesis of N, F and S co-doped graphene quantum dots[J]. Nanoscale, 2015, 7(27):11515-11519.
    Zhu C, Zhai J, Dong S. Bifunctional fluorescent carbon nanodots:green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction[J]. Chemical Communications, 2012, 48(75):936-9369.
    Wei J, Liu B, Yin P. Dual functional carbonaceous nanodots exist in a cup of tea[J]. RSC Advances, 2014, 4(108):63414-63419.
    Liu Y, Liu C-Y,.Zhang Z-Y. Synthesis and surface photochemistry of graphitized carbon quantum dots[J]. Journal of Colloid and Interface Science, 2011, 356(2):416-421.
    Dong Y, Pang H, Yang H B, et al. Carbon-based dots Co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission[J]. Angewandte Chemie International Edition, 2013, 52(30):7800-7804.
    Bao L, Liu C, Zhang Z L, et al. Photoluminescence-tunable carbon nanodots:Surface-state energy-gap tuning[J]. Advanced Materials, 2015, 27(10):1663-1667.
    Li H, Kang Z, Liu Y, et al. Carbon nanodots:synthesis, properties and applications[J]. Journal of Materials Chemistry, 2012, 22(46):24230-24253.
    Li P, Huang L, Lin Y, et al. Printable temperature-responsive hybrid hydrogels with photoluminescent carbon nanodots[J]. Nanotechnology, 2014, 25(5):055603-055608.
    Deng Z, Lie F L, Shen S, et al. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence[J]. Langmuir, 2009, 25(1):434-442.
    Sk M P, Jaiswal A,Paul A, et al. Presence of amorphous carbon nanoparticles in food caramels[J]. Scientific Reports, 2012, 2:383.
    Aboulaich A, Geszke M, Balan L, et al. Water-based route to colloidal Mn-doped ZnSe and core/shell ZnSe/ZnS quantum dots[J]. Inorganic Chemistry, 2010, 49(23):10940-10948.
    Costas-Mora I, Romero V, Lavilla I, et al. In situ building of a nanoprobe based on fluorescent carbon dots for methylmercury detection[J]. Analytical Chemistry, 2014, 86(9):4536-4543.
    Zhu S, Meng Q, Wang L, et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging[J]. Angewandte Chemie International Edition, 2013, 52(14):3953-3957.
    Zhang R, Chen W. Nitrogen-doped carbon quantum dots:Facile synthesis and application as a "turn-off" fluorescent probe for detection of Hg2+ ions[J]. Biosensors and Bioelectronics, 2014, 55:83-90.
    Zhou L, Lin Y, Huang Z, et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices[J]. Chemical Communications, 2012, 48(8):1147-1149.
    Chan Y H, Chen J, Liu Q, et al. Ultrasensitive copper(Ⅱ) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots[J]. Analytical Chemistry, 2010, 82(9):3671-3678.
    Liang G, Liu H, Zhang J, et al. Ultrasensitive Cu2+ sensing by near-infrared-emitting CdSeTe alloyed quantum dots[J]. Talanta, 2010, 80(5):2172-2176.
    Koneswaran M, Narayanaswamy R. L-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion[J]. Sensors and Actuators B:Chemical, 2009, 139(1):104-109.
  • 加载中
图(1)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  88
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-02
  • 录用日期:  2018-08-30
  • 修回日期:  2018-06-06
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回