留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究

殷腾 蒋炳炎 苏哲安 樊哲琼 黄启忠

殷腾, 蒋炳炎, 苏哲安, 樊哲琼, 黄启忠. 载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究. 新型炭材料, 2018, 33(4): 357-363. doi: 10.1016/S1872-5805(18)60345-2
引用本文: 殷腾, 蒋炳炎, 苏哲安, 樊哲琼, 黄启忠. 载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究. 新型炭材料, 2018, 33(4): 357-363. doi: 10.1016/S1872-5805(18)60345-2
YIN Teng, JIANG Bing-yan, SU Zhe-an, FAN Zhe-qiong, HUANG Qi-zhong. Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon. New Carbon Mater., 2018, 33(4): 357-363. doi: 10.1016/S1872-5805(18)60345-2
Citation: YIN Teng, JIANG Bing-yan, SU Zhe-an, FAN Zhe-qiong, HUANG Qi-zhong. Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon. New Carbon Mater., 2018, 33(4): 357-363. doi: 10.1016/S1872-5805(18)60345-2

载气对化学气相沉积中气体流场、反应物与热解炭沉积率影响的仿真研究

doi: 10.1016/S1872-5805(18)60345-2
基金项目: 中南大学机电工程学院研究生创新项目(2014bcsjj04).
详细信息
    作者简介:

    殷腾,博士.E-mail:461782178@qq.com

    通讯作者:

    蒋炳炎,博士,教授.E-mail:jby@csu.edu.cn

  • 中图分类号: TQ127.1+1

Numerical simulation of carrier gas effects on flow field, species concentration and deposition rate in the chemical vapor deposition of carbon

Funds: Student Creative Program of Mechanical Engineering Department of Central South University (2014bcsjj04).
  • 摘要: 为了研究载气对化学气相沉积过程的影响,采用二维仿真模型,模拟立式反应炉中化学气相沉积过程。并建立了全组分扩散模型描述化学气相沉积过程中气体分子间的扩散过程。研究了氢气,氮气和氩气对气体流场,反应物浓度场以及热解炭沉积率的影响。结果表明,氢气有利于提高气体流场的稳定性;氢气有利于反应物的扩散,以氢气作为载气时,沉积壁面CH4,C2H2,C2H4和C6H6的浓度均匀性较好。采用氩气和氮气作为载气时,沉积率均高于氢气做载气的情况,但热解炭的沉积均匀性低于氢气做载气时的情况。仿真结果与实验吻合较好。
  • Becker A, Hüttinger K J. Chemistry and kinetics of chemical vapor deposition of pyrocarbon-Ⅱ pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime[J]. Carbon, 1998, 36(3):177-199.
    YANG Wei, LUO Rui-ying, HOU Zhen-hua, et al. Influence of the microstructure of the carbon matrices on the internal friction behavior of carbon/carbon composites[J]. New Carbon Materials, 2016, 31(2):159-166.
    Tang X, Xie Z, Huang Q, et al. Mass-transport-controlled, large-area, uniform deposition of carbon nanofibers and their application in gas diffusion layers of fuel cells[J]. Nanoscale, 2015, 7(17):7971-7979.
    LI Ya-juan, MA Chang, KANG Jian-li, et al. Preparation of diameter-controlled multi-wall carbon nanotubes by an improved floating-catalyst chemical vapor deposition method[J]. New Carbon Materials, 2017, 32:234-241.
    Cheimarios N, Koronaki E D, Boudouvis A G. Enabling a commercial computational fluid dynamics code to perform certain nonlinear analysis tasks[J]. Computers & Chemical Engineering, 2011, 35(12):2632-2645.
    Cheng W T, Li H C, Huang C N. Simulation and optimization of silicon thermal CVD through CFD integrating Taguchi method[J]. Chemical Engineering Journal, 2008, 137(3):603-613.
    Ibrahim J, Paolucci S. Transient solution of chemical vapor infiltration/deposition in a reactor[J]. Carbon, 2011,49(3):915-930.
    Li H, Li A, Bai R, et al. Numerical simulation of chemical vapor infiltration of propylene into C/C composites with reduced multi-step kinetic models[J]. Carbon, 2005, 43(14):2937-2950.
    Mishra P, Verma N. A CFD study on a vertical chemical vapor deposition reactor for growing carbon nanofibers[J]. Chemical Engineering Research & Design, 2012, 90(12):2293-2301.
    Zhang W, Hüttinger K J. Simulation studies on chemical vapor infiltration of carbon[J]. Composites Science & Technology, 2002, 62(15):1947-1955.
    Benzinger W, Hüttinger K J. Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-IV. Investigation of methane/hydrogen mixtures[J]. 1999, 37(6):931-940.
    Li A, Norinaga K, Zhang W, et al. Modeling and simulation of materials synthesis:Chemical vapor deposition and infiltration of pyrolytic carbon[J]. Composites Science & Technology, 2008, 68(5):1097-1104.
    Bird R B, Stewart W E, Lightfoot E N, et al. Transport phenomena[J]. John Wiley & Sons, 2002, 28(2):338-359.
    Schwaab M, Lemos L P, Pinto J C. Optimum reference temperature for reparameterization of the Arrhenius equation. Part 2:Problems involving multiple reparameterizations[J]. Chemical Engineering Science, 2008, 63(11):2895-2906.
    Morris J P, Fox P J, Zhu Y. Modeling low reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1):214-226.
    Briscoe B, Luckham P, Zhu S. The effects of hydrogen bonding upon the viscosity of aqueous poly(vinyl alcohol) solutions[J]. Polymer, 2000, 41(10):3851-3860.
    Lemmon E W, Jacobsen R T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air[J]. International Journal of Thermophysics, 2004, 25(1):21-69.
  • 加载中
图(1)
计量
  • 文章访问数:  535
  • HTML全文浏览量:  113
  • PDF下载量:  174
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-10
  • 录用日期:  2018-08-30
  • 修回日期:  2018-08-03
  • 刊出日期:  2018-08-28

目录

    /

    返回文章
    返回