留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚苯并噁嗪基硫,氮共掺杂多孔炭的制备及其对CO2的吸附性能

金祖儿 王建龙 赵日杰 管涛涛 张东东 李开喜

金祖儿, 王建龙, 赵日杰, 管涛涛, 张东东, 李开喜. 聚苯并噁嗪基硫,氮共掺杂多孔炭的制备及其对CO2的吸附性能. 新型炭材料, 2018, 33(5): 392-401. doi: 10.1016/S1872-5805(18)60347-6
引用本文: 金祖儿, 王建龙, 赵日杰, 管涛涛, 张东东, 李开喜. 聚苯并噁嗪基硫,氮共掺杂多孔炭的制备及其对CO2的吸附性能. 新型炭材料, 2018, 33(5): 392-401. doi: 10.1016/S1872-5805(18)60347-6
JIN Zu-er, WANG Jian-long, ZHAO Ri-jie, GUAN Tao-tao, ZHANG Dong-dong, LI Kai-xi. Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture. New Carbon Mater., 2018, 33(5): 392-401. doi: 10.1016/S1872-5805(18)60347-6
Citation: JIN Zu-er, WANG Jian-long, ZHAO Ri-jie, GUAN Tao-tao, ZHANG Dong-dong, LI Kai-xi. Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture. New Carbon Mater., 2018, 33(5): 392-401. doi: 10.1016/S1872-5805(18)60347-6

聚苯并噁嗪基硫,氮共掺杂多孔炭的制备及其对CO2的吸附性能

doi: 10.1016/S1872-5805(18)60347-6
基金项目: 国家自然科学基金(U1510204,51672291);山西省煤基重点科技攻关项目(MD2014-09);山西省重点研发计划项目(201603D321023).
详细信息
    作者简介:

    金祖儿,硕士研究生.E-mail:316155842@qq.com

    通讯作者:

    王建龙,博士,副研究员.E-mail:jianlong.wang@hotmail.com;李开喜,博士,研究员.E-mail:likx@sxicc.ac.cn

  • 中图分类号: TQ127.1+1

Synthesis of S, N co-doped porous carbons from polybenzoxazine for CO2 capture

Funds: National Natural Science Foundation of China (U1510204, 51672291); Shanxi Province Coal-based Key Scientific and Technological Project (MD2014-09); Shanxi Province Key Research and Development Plan (201603D321023).
  • 摘要: 采用原位合成法,以对氰基苯酚、硫脲和甲醛为原料制备了聚苯并噁嗪基树脂,经炭化、活化得到相应的含硫,氮共掺杂的多孔炭。对样品的物理结构和表面化学性质进行了表征,结果表明活化后活性炭比表面积为1 512~2 385 m2 g-1,孔结构以微孔为主,且含有一定硫,氮元素。在1 bar和0、25℃条件下,未加造孔剂600℃活化样品的CO2的吸附容量最高分别为6.96 mmol g-1、4.55 mmol g-1,且具有一定的选择性和良好的循环稳定性。通过对CO2吸附热及酸化实验分析,发现吸附过程同时存在物理吸附和化学吸附,且以有效的微孔结构物理吸附为主,硫/氮官能团的化学吸附为辅。
  • Hao G P, Jin Z Y, Sun Q, et al. Porous carbon nanosheets with precisely tunable thickness and selective CO2 adsorption properties[J]. Energy & Environmental Science, 2013, 6(12):3740-3747.
    Leung D Y C, Caramanna G, Maroto-Valer M M. An overview of current status of carbon dioxide capture and storage technologies[J]. Renewable and Sustainable Energy Reviews, 2014, 39:426-443.
    Hao G P, Li W C, Qian D, et al. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents[J]. Journal of the American Chemical Society, 2011, 133(29):11378-11388.
    Lee K M, Lim Y H, Park C J, et al. Adsorption of low-level CO2 using modified zeolites and activated carbon[J]. Industrial & Engineering Chemistry Research, 2012, 51(3):1355-1363.
    Lu W G, Sculley J P, Yuan D Q, et al. Carbon dioxide capture from air using amine-grafted porous polymer networks[J]. The Journal of Physical Chemistry C, 2013, 117(8):4057-4061.
    Wriedt M, Sculley J P, Yakovenko A A, et al. Low-energy selective capture of carbon dioxide levels by a pre-designed elastic single-molecule trap[J]. Angewandte Chemie-International Edition, 2012, 51(39):9804-9808.
    Hao G P, Li W C, Lu A H. Novel porous solids for carbon dioxide capture[J]. Journal of Materials Chemistry, 2011, 21(18):6447-6451.
    Daff T D, Collins S P, Dureckova H, et al. Evaluation of carbon nanoscroll materials for post-combus-tion CO2 capture[J]. Carbon, 2016, 101:218-225.
    Sun Y H, Zhao J H, Wang Y L, et al. Sulfur-doped millimeter-sized microporous activated carbon sph-eres derived from sulfonated poly(styrene-divinylbenzene) for CO2 capture[J]. The Journal of Physical Chemistry C, 2017, 121(18):10000-10009.
    Wickramaratne N P, Jaroniec M. Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres[J]. Journal of Materials Chemistry A, 2013, 1(1):112-116.
    Qian D, Lei C, Wang E M, et al. A method for creating microporous carbon materials with excellent CO2-adsorption capacity and selectivity[J]. ChemSusChem, 2014, 7(1):291-298.
    Zhao Y F, Zhao L, Yao K X, et al. Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(37):19726-19731.
    Bandosz T J, Ren T Z. Porous carbon modified with sulfur in energy related applications[J]. Carbon, 2017,118:561-577.
    Li P, Xing C, Qu S J, et al. Carbon dioxide capturing by nitrogen-doping microporous carbon[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(7):1434-1442.
    Babu D J, Bruns M, Schneider R, et al. Understanding the influence of N-doping on the CO2 adsorption characteristics in carbon nanomaterials[J]. The Journal of Physical Chemistry C, 2017, 121(1):616-626.
    Shahtalebi A, Mar M, Guérin K, et al. Effect of fluorine doping on structure and CO2 adsorption in silicon carbide-derived carbon[J]. Carbon, 2016, 96:565-577.
    Zhao W X, Han S, Zhuang X D, et al. Cross-linked polymer-derived B/N co-doped carbon materials with selective capture of CO2[J]. Journal of Materials Chemistry A, 2015, 3(46):23352-23359.
    Wan L, Wang J L, Feng C, et al. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture[J]. Nanoscale, 2015, 7(15):6534-6544.
    Houshmand A, Daud W M A W, Shasfeeyan M S. Exploring potential methods for anchoring amine groups on the surface of activated carbon for CO2 adsorption[J]. Separation Science and Technology, 2011, 46(7):1098-1112.
    Wu Z X, Webley P A, Zhao D Y. Post-enrichment of nitrogen in soft-templated ordered mesoporous carbon materials for highly efficient phenol removal and CO2 capture[J]. Journal of Materials Chemistry, 2012, 22(22):11379-11389.
    Wang J C, Senkovska I, Oschatz M, et al. Imine-linked polymer-derived nitrogen-doped microporous carbons with excellent CO2 capture properties[J]. ACS Applied Materials & Interfaces, 2013, 5(8):3160-3167.
    Li R, Ren X Q, Feng X, et al. A highly stable metal-and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation[J]. Chemical Communications, 2014, 50(52):6894-6897.
    Liu R L, Ji W J, He T, et al. Fabrication of nitrogen-doped hierarchically porous carbons through a hyb-rid dual-template route for CO2 capture and haemoperfusion[J]. Carbon, 2014, 76:84-95.
    Xia Y D, Zhu Y Q, Tang Y. Preparation of sulfur-doped microporous carbons for the storage of hy-drogen and carbon dioxide[J]. Carbon, 2012, 50(15):5543-5553.
    Kwiatkowski M, Policicchio A, Seredych M, et al. Evaluation of CO2 interactions with S-doped nano-porous carbon and its composites with a reduced GO:effect of surface features on an apparent physical adsorption mechanism[J]. Carbon, 2016, 98:250-258.
    Seredych M, Rodríguez-Castelloón E, Bandosz T J. Alterations of S-doped porous carbon-rGO com-posites surface features upon CO2 adsorption at ambient conditions[J]. Carbon, 2016, 107:501-509.
    Li X F, Xue Q Z, Chang X, et al. Effects of sulfur doping and humidity on CO2 capture by graphite split pore:A theoretical study[J]. ACS Applied Materials & Interfaces, 2017, 9(9):8336-8343.
    Seredych M, Jagiello J, Bandosz T J. Complexity of CO2 adsorption on nano-porous sulfur-doped carbons-Is surface chemistry an important factor?[J]. Carbon, 2014, 74:207-217.
    Bandosz T J, Seredych M, Rodriguez-Castellon E, et al. Evidence for CO2 reactive adsorption on nanoporous S-and N-doped carbon at ambient conditions[J].Carbon, 2016, 96:856-863.
    Demir K D, Kiskan B, Aydogan B, et al. Thermally curable main-chain benzoxazine prepolymers via polycondensation route[J]. Reactive & Functional Polymers, 2013, 73(2):346-359.
    Thubsuang U, Ishida H, Wongkasemjit S, et al. Advanced and economical ambient drying method for controlled mesopore polybenzoxazine-based carbon xerogels:Effects of non-ionic and cationic surfactant on porous structure[J]. Journal of Colloid and Interface Science, 2015, 459:241-249.
    Wang M W, Jeng R J, Lin C H. Study on the ring-opening polymerization of benzoxazine through multisubstituted polybenzoxazine precursors[J]. Macromolecules, 2015, 48(3):530-535.
    Wang P, Zhang G, Li Z C, et al. Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources[J]. ACS Applied Materials & Interfances, 2016, 8(40):26908-26915.
    Barwe S, Andronescu C, Masa J, et al. Polybenzoxazine-derived N-doped carbon as matrix for powder-based electro-catalysts[J]. ChemSusChem, 2017, 10(12):2653-2659.
    Semerci E, Kiskan B, Yagci Y. Thiol reactive polybenzoxazine precursors:A novel route to functional polymers by thiol-oxazine chemistry[J]. European Polymer Journal, 2015, 69:636-641.
    Kou J H, Sun L B. Nitrogen-doped porous carbons derived from carbonization of a nitrogen-containing polymer:efficient adsorbents for selective CO2 capture[J]. Industrial & Engineering Chemistry Research, 2016, 55(41):10916-10925.
    Wang S, Li W C, Zhang L, et al. Polybenzoxazine-based monodisperse carbon spheres with low-thermal shrinkage and their CO2 adsorption properties[J]. Journal of Materials Chemistry A, 2014, 2(12):4406-4412.
    Wan L, Wang J L, Sun Y H, et al. Polybenzoxazine-based nitrogen-containing porous carbons for high-performance supercapacitor electrodes and carbon dioxide capture[J]. RSC Advances, 2015, 5(7):5331-5342.
    Lei Y L, Luo Y J, Chen F, et al. Sulfonation process and desalination effect of poly-styrene/PVDF semi-interpenetrating polymer network cation exchange membrane[J]. Polymers, 2014, 6(7):1914-1928.
    Wang J C, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45):23710-23725.
    Cai J J, Qi J B, Yang C P, et al. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 Capture[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3703-3711.
    Li Y, Zou B, Hu C W, et al. Nitrogen-doped porous carbon nanofiber webs for efficient CO2 capture and conversion[J]. Carbon, 2016, 99:79-89.
    Han C, Bo X J, Zhang Y F, et al. One-pot synthesis of nitrogen and sulfur co-doped onion-like meso-porous carbon vesicle as an efficient metal-free catalyst for oxygen reduction reaction in alkaline solution[J]. Journal of Power Sources, 2014, 272:267-276.
    Gu W T, Sevilla M, Magasinski A, et al. Sulfur-containing activated carbons with greatly reduced con-tent of bottle neck pores for double-layer capacitors:a case study for pseudocapacitance detection[J]. Energy & Environmental Science, 2013, 6(8):2465-2476.
    Tian W J, Zhang H Y, Sun H Q, et al. Heteroatom (N or N-S)-doping induced layered and honeycomb microstructures of porous carbons for CO2 capture and energy applications[J]. Advanced Functional Materials, 2016, 26(47):8651-8661.
    Zhao X C, Zhang Q, Zhang B S, et al. Dual-heteroatom-modified ordered mesoporous carbon:Hydrothermal functionalization, structure and its electrochemical performance[J]. Journal of Materials Chemistry, 2012, 22(11):4963-4969.
    Seema H, Kemp K C, Le N H, et al. Highly selective CO2 capture by S-doped microporous carbon materials[J]. Carbon, 2014, 66:320-326.
    Wang M, Fan X Q, Zhang L X, et al. Probing the role of O-containing groups in CO2 adsorption of N-doped porous activated carbon[J]. Nanoscale, 2017, 9(44):17593-17600.
    Bai R Z, Yang M L, Hu G S, et al. A new nanoporous nitrogen-doped highly-efficient carbonaceous CO2 sorbent synthesized with inexpensive urea and petroleum coke[J]. Carbon, 2015, 81:465-473.
    Fan X Q, Zhang L X, Zhang G B, et al. Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture[J]. Carbon, 2013, 61:423-430.
    Sevillan M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(5):1765-1771.
    Gu S, He J Q, Zhu Y L, et al. Facile carbonization of microporous organic polymers into hierarchically porous carbon stargeted for effective CO2 uptake at low pressures[J]. ACS Applied Materials & Inter-faces, 2016, 8(28):18383-18392.
    Plaza M G, González A S, Pis J J, et al. Production of microporous biochars by single-step oxidation:Effect of activation conditions on CO2 capture[J]. Applied Energy, 2014, 114(SI):551-562.
  • 加载中
图(1)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  92
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-10
  • 录用日期:  2018-11-01
  • 修回日期:  2018-09-29
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回