留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机械剥离过程中石墨晶体结构内能量相互作用的机理分析

尹力 邓钏 邓斐 葛晓陵

尹力, 邓钏, 邓斐, 葛晓陵. 机械剥离过程中石墨晶体结构内能量相互作用的机理分析. 新型炭材料, 2018, 33(5): 449-459. doi: 10.1016/S1872-5805(18)60351-8
引用本文: 尹力, 邓钏, 邓斐, 葛晓陵. 机械剥离过程中石墨晶体结构内能量相互作用的机理分析. 新型炭材料, 2018, 33(5): 449-459. doi: 10.1016/S1872-5805(18)60351-8
YIN Li, DENG Chuan, DENG Fei, GE Xiao-ling. Analysis of the interaction energies between and within graphite particles during mechanical exfoliation. New Carbon Mater., 2018, 33(5): 449-459. doi: 10.1016/S1872-5805(18)60351-8
Citation: YIN Li, DENG Chuan, DENG Fei, GE Xiao-ling. Analysis of the interaction energies between and within graphite particles during mechanical exfoliation. New Carbon Mater., 2018, 33(5): 449-459. doi: 10.1016/S1872-5805(18)60351-8

机械剥离过程中石墨晶体结构内能量相互作用的机理分析

doi: 10.1016/S1872-5805(18)60351-8
基金项目: 上海市科委纳米专项基金(0652nm001).
详细信息
    作者简介:

    尹力,博士研究生.E-mail:yinliecust@foxmail.com

    通讯作者:

    葛晓陵,教授.E-mail:xlge@ecust.edu.cn

  • 中图分类号: TQ165

Analysis of the interaction energies between and within graphite particles during mechanical exfoliation

Funds: Special Funds for Nanotechnology of the Shanghai Science and Technology Committee of China (0652nm001).
  • 摘要: 通过分析机械剥离过程中石墨颗粒的厚度方向和横向尺寸分布变化,建立了计算石墨片体与石墨片单层之间能量相互作用的机械模型。表征分析了剥离过程中石墨晶体结构的变化趋势。分别分析计算了石墨片剥落过程中的范德华能、石墨片单层断裂过程中的共价键能、片体以及片单层各自团聚过程中的势能。结果表明,两个石墨片单层之间的范德华力作用是导致片单层团聚的关键因素;随着剥离过程的进行,团聚现象逐渐超过剥离现象。石墨片单层剥离过程中的范德华能是片单层团聚过程中的势能的1/4,并且比石墨块体断裂过程中的共价键能小2个数量级。随着剥离出的石墨片体和片单层数量的增加,由于晶体结构间范德华能的释放而导致团聚现象急剧增加;剥离过程中的库伦能比较微小可以忽略不计。该机械模型对于制备高纵横比和无团聚的石墨片层材料具有重要意义。
  • Bulusheva L G, Tur V A, Fedorovskaya E O, et al. Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites[J]. Carbon, 2014, 78:137-146.
    Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065):197-200.
    Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457(7230):706-710.
    Bunch J S, Van Der Zande A M, Verbridge S S, et al. Electromechanical resonators from graphene sheets[J]. Science, 2007, 315(5811):490-493
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887):385-388.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Mater Lett, 2015, 157:273-276.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Novoselov K S, Fal V I, Colombo L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419):192-200.
    Hirsch A. The era of carbon allotropes[J]. Nature materials, 2010, 9(11):868-871.
    Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8):2127-2150.
    Van Bommel A J, Crombeen J E, Van Tooren A. LEED and Auger electron observations of the SiC (0001) surface[J]. Surface Science, 1975, 48(2):463-472.
    Charrier A, Coati A, Argunova T, et al. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films[J]. Journal of Applied Physics, 2002, 92(5):2479-2484.
    Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52):19912-19916.
    Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[J]. Science, 2006, 312(5777):1191-1196.
    Emtsev K V, Bostwick A, Horn K, et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide[J]. Nature Materials, 2009, 8(3):203-207.
    Liu Y Z, Li Y F, Su F Y, et al. Easy one-step synthesis of N-doped graphene for supercapacitors[J]. Energy Storage Mater, 2016, 2:69-75.
    Li X, Cai W, An J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932):1312-1314.
    Wei D, Wu B, Guo Y, et al. Controllable chemical vapor deposition growth of few layer graphene for electronic devices[J]. Accounts of chemical research, 2012, 46(1):106-115.
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElctroChem, DOI: 10.1002/celc.201800937.
    Damm C, Nacken T J, Peukert W. Quantitative evaluation of delamination of graphite by wet media milling[J]. Carbon, 2015, 81:284-294.
    Hennart S L A, Wildeboer W J, Van Hee P, et al. Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances[J]. Chemical Engineering Science, 2009, 64(19):4123-4130.
    Mende S, Stenger F, Peukert W, et al. Mechanical production and stabilization of submicron particles in stirred media mills[J]. Powder Technology, 2003, 132(1):64-73.
    Stenger F, Mende S, Schwedes J, et al. Nanomilling in stirred media mills[J]. Chemical Engineering Science, 2005, 60(16):4557-4565.
    Blecher L, Kwade A, Schwedes J. Motion and stress intensity of grinding beads in a stirred media mill. Part 1:energy density distribution and motion of single grinding beads[J]. Powder Technology, 1996, 86(1):59-68.
    Kwade A. Determination of the most important grinding mechanism in stirred media mills by calculating stress intensity and stress number[J]. Powder Technology, 1999, 105(1):382-388.
    Tavares L M, King R P. Single-particle fracture under impact loading[J]. International Journal of Mineral Processing, 1998, 54(1):1-28.
    Gao M, Forssberg E. Prediction of product size distributions for a stirred ball mill[J]. Powder Technology, 1995, 84(2):101-106.
    Shi F, Xie W. A specific energy-based size reduction model for batch grinding ball mill[J]. Minerals Engineering, 2015, 70:130-140.
    Wang Y, Forssberg E. Enhancement of energy efficiency for mechanical production of fine and ultra-fine particles in comminution[J]. China Particuology, 2007, 5(3):193-201.
    Stamboliadis E T. The energy distribution theory of comminution specific surface energy, mill efficiency and distribution mode[J]. Minerals engineering, 2007, 20(2):140-145.
    Tavares L M. Analysis of particle fracture by repeated stressing as damage accumulation[J]. Powder Technology, 2009, 190(3):327-339.
    Tavares L M, King R P. Modeling of particle fracture by repeated impacts using continuum damage mechanics[J]. Powder Technology, 2002, 123(2):138-146.
    Parashar A, Mertiny P. Effect of van der Waals interaction on the mode I fracture characteristics of graphene sheet[J]. Solid State Communications, 2013, 173:56-60.
    Chen X, Tian F, Persson C, et al. Interlayer interactions in graphites[J]. Scientific Reports, 2013, 3.
    Charlier J C, Gonze X, Michenaud J P. Graphite interplanar bonding:electronic delocalization and van der Waals interaction[J]. EPL (Europhysics Letters), 1994, 28(6):403.
    McClure J W. Energy band structure of graphite[J]. IBM Journal of Research and Development, 1964, 8(3):255-261.
    Zheng Z, Müllner M, Ling J, et al. Surface interactions surpass carbon-carbon bond:understanding and control of the scission behavior of core-shell polymer brushes on surfaces[J]. ACS Nano, 2013, 7(3):2284-2291.
    Lotya M, Hernandez Y, King P J, et al. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions[J]. Journal of the American Chemical Society, 2009, 131(10):3611-3620.
    Hennart S L A, Wildeboer W J, Van Hee P, et al. Stability of particle suspensions after fine grinding[J]. Powder Technology, 2010, 199(3):226-231.
    Sherwood J D, Stone H A. Erratum:"Electrophoresis of a thin charged disk"[Phys. Fluids 7, 697(1995)] [J]. Physics of Fluids (1994-present), 1995, 7(8):2095-2095.
    Becker M, Kwade A, Schwedes J. Stress intensity in stirred media mills and its effect on specific energy requirement[J]. International Journal of Mineral Processing, 2001, 61(3):189-208.
    Austin L G, Shah J, Wang J, et al. An analysis of ball-and-race milling. Part I. The Hardgrove mill[J]. Powder Technology, 1981, 29(2):263-275.
    Faitli J, Csoke B, Solymár K. Universal mill for determination of grindability[C]//ICSOBA symposium, 2004.
    Mucsi G. Fast test method for the determination of the grindability of fine materials[J]. Chemical Engineering Research and Design, 2008, 86(4):395-400.
  • 加载中
图(1)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  64
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-05
  • 录用日期:  2018-11-01
  • 修回日期:  2018-09-28
  • 刊出日期:  2018-10-28

目录

    /

    返回文章
    返回