留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维石墨氮化碳材料中锂和钠存储的第一性原理研究

王梦尧 李佳

王梦尧, 李佳. 二维石墨氮化碳材料中锂和钠存储的第一性原理研究. 新型炭材料, 2018, 33(6): 510-515. doi: 10.1016/S1872-5805(18)60353-1
引用本文: 王梦尧, 李佳. 二维石墨氮化碳材料中锂和钠存储的第一性原理研究. 新型炭材料, 2018, 33(6): 510-515. doi: 10.1016/S1872-5805(18)60353-1
WANG Meng-yao, LI Jia. A first-principles study of lithium and sodium storage in two-dimensional graphitic carbon nitride. New Carbon Mater., 2018, 33(6): 510-515. doi: 10.1016/S1872-5805(18)60353-1
Citation: WANG Meng-yao, LI Jia. A first-principles study of lithium and sodium storage in two-dimensional graphitic carbon nitride. New Carbon Mater., 2018, 33(6): 510-515. doi: 10.1016/S1872-5805(18)60353-1

二维石墨氮化碳材料中锂和钠存储的第一性原理研究

doi: 10.1016/S1872-5805(18)60353-1
详细信息
    作者简介:

    王梦尧,硕士研究生.E-mail:wangmy14@tsinghua.org.cn

    通讯作者:

    李佳,副教授.E-mail:li.jia@sz.tsinghua.edu.cn

  • 中图分类号: TQ127.1+1

A first-principles study of lithium and sodium storage in two-dimensional graphitic carbon nitride

  • 摘要: 由于氮原子和均匀孔隙的存在,二维石墨氮化碳被认为可用于电池电极材料。作为一种新型的多孔结构,g-C2N材料在电池电极材料方面应用的研究甚少。本文通过第一性原理计算研究了单层g-C2N上锂和钠的吸附和存储情况。基于单层g-C2N的锂离子电池的容量可以达到596 mAh/g(LiC2N),而相应的钠离子容量只能达到276 mAh/g(NaC4N2)。平均锂结合能相对于孤立的锂原子高达2.39 eV,这表明g-C2N上获得的锂电池容量在循环过程中可能不会持续。通过改变C和N原子之间的比例,在C∶N为5∶1的情况下,平均锂结合能可以降低到1.69 eV,这说明在保持可逆电池容量的同时,循环性能显著改善。所有这些理论计算表明,具有均匀孔隙的石墨碳氮化物可能是一种具有高容量和锂迁移率的电极材料。
  • SU Fang-yuan, XIE Li-jing, SUN Guo-hua, et al. Theoretical research progress on the use of graphene in different electrochemical processes[J]. New Carbon Materials, 2016, 31(4):363-377.
    Zhang X, Huang X, Xia L, et al. Facile synthesis of flexible and free-standing cotton covered by graphene/MoO2 for lithium-ions batteries[J]. Ceramics International, 2017, 43(6):4753-4760.
    Qiu B, Yin C, Xia Y, et al. Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(4):3661-3666.
    Ying H, Zhang S, Meng Z, et al. Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes[J]. Journal of Materials Chemistry A, 2017, 5(18):8334-8342.
    Dunn B, Kamath H, Tarascon JM. Electrical energy storage for the grid:a battery of choices[J]. Science, 2011, 334(6058):928-935.
    WU Jun-xiong, QIN Xian-ying, LIANG Ge-meng, et al. A binder-free web-like silicon-carbon nanofiber-graphene hybrid membrane for use as the anode of a lithium-ion battery[J]. New Carbon Materials, 2016, 31(3):321-327.
    Zheng F, Yang Y, Chen Q. High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework[J]. Nature communications, 2014, 5:5261.
    Yoo E, Kim J, Hosono E, et al. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries[J]. Nano letters, 2008, 8(8):2277-2282.
    Li G, Li Y, Liu H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46(19):3256-3258.
    Sun C, Searles D J. Lithium storage on graphdiyne predicted by DFT calculations[J]. The Journal of Physical Chemistry C, 2012, 116(50):26222-26226.
    Zhang H, Xia Y, Bu H, et al. Graphdiyne:A promising anode material for lithium ion batteries with high capacity and rate capability[J]. Journal of Applied Physics, 2013, 113(4):044309.
    Huang C, Zhang S, Liu H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11:481-489.
    Zhang S, Liu H, Huang C, et al. Bulk graphdiyne powder applied for highly efficient lithium storage[J]. Chemical Communications, 2015, 51(10):1834-1837.
    Zhang S, Du H, He J, et al. Nitrogen-doped graphdiyne applied for lithium-ion storage[J]. ACS applied materials & interfaces, 2016, 8(13):8467-8473.
    Shen W, Wang C, Xu Q, et al. Nitrogen-doping-induced defects of a carbon coating layer facilitate Na-storage in electrode materials[J]. Advanced Energy Materials, 2015, 5(1):982.
    Reddy AL, Srivastava A, Gowda SR, et al. Synthesis of nitrogen-doped graphene films for lithium battery application[J]. ACS nano, 2010, 4(11):6337-6342.
    Liu D, Fu C, Zhang N, et al. Three-dimensional porous nitrogen doped graphene hydrogel for high energy density supercapacitors[J]. Electrochimica Acta, 2016, 213:291-297.
    Wang X, Liu Y, Zhu D, et al. Controllable growth, structure, and low field emission of well-aligned CNx nanotubes[J]. The Journal of Physical Chemistry B, 2002, 106(9):2186-2190.
    Ma C, Shao X, Cao D. Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries:a first-principles study[J]. Journal of Materials Chemistry, 2012, 22(18):8911-8915.
    Li X, Liu J, Zhang Y, et al. High concentration nitrogen doped carbon nanotube anodes with superior Li+ storage performance for lithium rechargeable battery application[J]. Journal of Power Sources, 2012, 197:238-245.
    Hu T, Sun X, Sun H, et al. Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability[J]. Physical Chemistry Chemical Physics, 2014, 16(3):1060-1066.
    Guo Q, Yang Q, Yi C, et al. Synthesis of carbon nitrides with graphite-like or onion-like lamellar structures via a solvent-free route at low temperatures[J]. Carbon, 2005, 43(7):1386-1391.
    Hankel M, Ye D, Wang L, et al. Lithium and sodium storage on graphitic carbon nitride[J]. The Journal of Physical Chemistry C, 2015, 119(38):21921-21927.
    Hankel M, Searles DJ. Lithium storage on carbon nitride, graphenylene and inorganic graphenylene[J]. Physical Chemistry Chemical Physics, 2016, 18(21):14205-14215.
    Mahmood J, Lee EK, Jung M, et al. Nitrogenated holey two-dimensional structures[J]. Nature communications, 2015, 6:6486-6490.
    Payne MC, Teter MP, Allan DC, et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics, 1992, 64(4):1045-1097.
    Gao J, Yip J, Zhao J, et al. Graphene nucleation on transition metal surface:structure transformation and role of the metal step edge[J]. Journal of the American Chemical Society, 2011, 133(13):5009-5015.
    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18):3865-3870.
    Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15):154104.
    Yu YX. Graphenylene:a promising anode material for lithium-ion batteries with high mobility and storage[J]. Journal of Materials Chemistry A, 2013, 1(43):13559-13566.
    Henkelman G, Uberuaga B P, Jónsson H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. The Journal of Chemical Physics, 2000, 113(22):9901-9904.
  • 加载中
图(1)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  99
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-12
  • 录用日期:  2018-12-27
  • 修回日期:  2018-11-28
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回