留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子印迹聚合物修饰氧化石墨烯用于选择性识别槲皮素

赵小峰 段菲菲 崔培培 杨永珍 刘旭光 侯相林

赵小峰, 段菲菲, 崔培培, 杨永珍, 刘旭光, 侯相林. 分子印迹聚合物修饰氧化石墨烯用于选择性识别槲皮素. 新型炭材料, 2018, 33(6): 529-543. doi: 10.1016/S1872-5805(18)60355-5
引用本文: 赵小峰, 段菲菲, 崔培培, 杨永珍, 刘旭光, 侯相林. 分子印迹聚合物修饰氧化石墨烯用于选择性识别槲皮素. 新型炭材料, 2018, 33(6): 529-543. doi: 10.1016/S1872-5805(18)60355-5
ZHAO Xiao-feng, DUAN Fei-fei, CUI Pei-pei, YANG Yong-zhen, LIU Xu-guang, HOU Xiang-lin. A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin. New Carbon Mater., 2018, 33(6): 529-543. doi: 10.1016/S1872-5805(18)60355-5
Citation: ZHAO Xiao-feng, DUAN Fei-fei, CUI Pei-pei, YANG Yong-zhen, LIU Xu-guang, HOU Xiang-lin. A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin. New Carbon Mater., 2018, 33(6): 529-543. doi: 10.1016/S1872-5805(18)60355-5

分子印迹聚合物修饰氧化石墨烯用于选择性识别槲皮素

doi: 10.1016/S1872-5805(18)60355-5
基金项目: 国家自然科学基金(U1610255,U1607120);山西省科技创新重点团队(2015013002-10,201605D131045-10);山西省研究生教育创新项目(2016SY018).
详细信息
    作者简介:

    赵小峰,硕士研究生.E-mail:18734143706@163.com

    通讯作者:

    刘旭光,教授.E-mail:liuxuguang@tyut.edu.cn;杨永珍,教授.E-mail:yyztyut@126.com;侯相林,研究员.E-mail:houxianglin@sxicc.ac.cn

  • 中图分类号: TB33

A molecularly-imprinted polymer decorated on graphene oxide for the selective recognition of quercetin

Funds: National Natural Science Foundation of China (U1610255, U1607120); Shanxi Provincial Key Innovative Research Team in Science and Technology (2015013002-10, 201605D131045-10); Postgraduate Innovation Program of Shanxi Province (2016SY018).
  • 摘要: 利用分子模拟技术设计槲皮素(Qu)印迹预组装体系,确定功能单体的种类及其与Qu的作用比例;在此基础上,采用自由基聚合法制备分子印迹聚合物修饰的氧化石墨烯(GO/MIP),并通过傅里叶变换红外光谱仪、元素分析仪、拉曼光谱仪、热重分析仪、扫描电子显微镜和原子力显微镜系统分析所制GO/MIP复合材料的形貌和结构。静态吸附实验的结果表明,在298 K下,GO/MIP复合材料对Qu的动力学吸附平衡时间和吸附量分别为30 min和30.61 mg g-1。此外,准二级动力学模型和Langmuir吸附等温模型可较好地描述GO/MIP复合材料对Qu的吸附行为。混合黄酮类化合物溶液中进行的竞争吸附实验的结果说明,相对Qu而言,GO/MIP复合材料对结构类似物山奈酚和芦丁的相对选择性系数分别为1.966和3.557。所制GO/MIP复合材料提高了表面MIPs用于选择性识别多酚类化合物的能力,为制备用于天然产物中特异性检测和快速分离黄酮的表面MIPs提供指导意义。
  • Tim Cushnie T P, Lamb Andrew J. Antimicrobial activity of flavonoids[J]. Int J Antimicrob Ag, 2005, 26:343-356.
    Song X L, Li J H, Wang J T, et al. Quercetin molecularly imprinted polymers:Preparation, recognition characteristics and properties as sorbent for solid-phase extraction[J]. Talanta, 2009, 80:694-702.
    Russo N, Toscano M, Uccella N. Semiempirical molecular modeling into quercetin reactive site:Structural, conformational, and electronic features[J]. J Agr Food Chem, 2000, 48:3232-3237.
    De Souza K C B, Schapoval E E S, Bassani V L. LC determination of flavonoids:Separation of quercetin, luteolin and 3-O-methylquercetin in Achyrocline satureioides preparations[J]. J Pharmaceut Biomed, 2002, 28:771-777.
    Fasolo D, Schwingel L, Holzschuh M, et al. Validation of an isocratic LC method for determination of quercetin and methylquercetin in topical nanoemulsions[J]. J Pharmaceut Biomed, 2007, 44:1174-1177.
    Hartonen K, Parshintsev J, Sandberg K, et al. Isolation of flavonoids from aspen knotwood by pressurized hot water extraction and comparison with other extraction techniques[J]. Talanta, 2007:74, 32-38.
    Stenger F C, Cechinel-Filho V, Meyre-Silva C, et al. Synthesis of laurylchitosan and its use in the separation of flavonoids from Aleurites moluccana by matrix solid-phase dispersion[J]. Chromatographia, 2009, 69:183-187.
    Mitani K, Narimatsu S, Kataoka H. Determination of daidzein and genistein in soybean foods by automated on-line in-tube solid-phase microextraction coupled to high-performance liquid chromatography[J]. J Chromatogr A, 2003, 986:169-177.
    Zhang X F, Du X Z, Huang X, et al. Creating protein-imprinted self-assembled monolayers with multiple binding sites and biocompatible imprinted cavities[J]. J Am Chem Soc, 2013, 135:9248-9251.
    Abbate V, Bassindale A R, Brandstadt K F, et al. Biomimetic catalysis at silicon centre using molecularly imprinted polymers[J]. J Catal, 2011, 284:68-76.
    Xie J C, Zhu L L, Luo H P, et al. Direct extraction of specific pharmacophoric flavonoids from gingko leaves using a molecularly imprinted polymer for quercetin[J]. J Chromatogr A, 2001, 934:1-11.
    Molinelli A, Weiss R, Mizaikoff B. Advanced solid phase extraction using molecularly imprinted polymers for the determination of quercetin in red wine[J]. J Agr Food Chem, 2002, 50:1804-1808.
    Sun S, Zhang M Q, Li Y J, et al. A molecularly imprinted polymer with incorporated graphene oxide for electrochemical determination of quercetin[J]. Sensors, 2013, 13:5493-5506.
    Mao Y, Bao Y, Gan S Y, et al. Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element[J]. Biosens Bioelectron, 2011, 28:291-297.
    Pakade V, Lindahl S, Chimuka L, et al. Molecularly imprinted polymers targeting quercetin in high-temperature aqueous solutions[J]. J Chromatogr A, 2012, 1230:15-23.
    Pardoa A, Mespouille L, Blankert B, et al. Quercetin-imprinted chromatographic sorbents revisited:Optimization of synthesis and rebinding protocols for application to natural resources[J]. J Chromatogr A, 2014, 1364:128-139.
    Luo J, Jiang S S, Liu X Y. Efficient one-pot synthesis of mussel-inspired molecularly imprinted polymer coated graphene for protein-specific recognition and fast separation[J]. J Phys Chem C, 2013, 117:18448-18456.
    Yang Y Z, Liu X G, Xu B S. Recent advances in molecular imprinting technology for the deep desulfurization of fuel oils[J]. New Carbon Mater, 2014, 29, 1-14.
    Gao B J, Zhang Y Y, Chen T. Designing and preparing of quercetin surface-imprinted material and its molecular recognition characteristics[J]. J Appl Polym Sci, 2014, 131:41112.
    Hong Y S, Chen L G. Extraction of quercetin from Herba Lysimachiae by molecularly imprinted-matrix solid phase dispersion[J]. J Chromatogr B, 2013, 941:38-44.
    Chen F F, Xie X Y, Shi Y P. Preparation of magnetic molecularly imprinted polymer for selective recognition of resveratrol in wine[J]. J Chromatogr A, 2013, 1300:112-118.
    Xia Y Q, Guo T Y, Song M D, et al. Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix[J]. React Funct Polym, 2006, 66:1734-1740.
    Liu Q, Shi J, Jiang G. Application of graphene in analytical sample preparation[J]. Trac-Trend Anal Chem, 2012, 37:1-11.
    Li Y, Li X, Dong C K, et al. A graphene oxide-based molecularly imprinted polymer platform for detecting endocrine disrupting chemicals[J]. Carbon, 2010, 48:3427-3433.
    Zeng Y B, Zhou Y, Kong L, et al. A novel composite of SiO2-coated graphene oxide and molecularly imprinted polymers for electrochemical sensing dopamine[J]. Biosens Bioelectron, 2013, 45:25-33.
    Duan F F, Chen C Q, Wang G Z, et al. Efficient adsorptive removal of dibenzothiophene by graphene oxide-based surface molecularly imprinted polymer[J]. RSC Adv, 2014, 4:1469.
    Luo J, Cong J J, Liu J, et al. A facile approach for synthesizing molecularly imprinted graphene for ultrasensitive and selective electrochemical detecting 4-nitrophenol[J]. Anal Chim Acta, 2015, 864:74-84.
    Liu S C, Pan J M, Zhu H J, et al. Graphene oxide based molecularly imprinted polymers with double recognition abilities:the combination of covalent boronic acid and traditional non-covalent monomers[J]. Chem Eng J, 2016, 290:220-231.
    Chen F F, Zhao W F, Zhang J, et al. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins[J]. Phys Chem Chem Phys, 2016, 18:718-725.
    Liu J B, Wang Y, Su T T, et al. Theoretical and experimental studies on the performances of barbital-imprinted systems[J]. J Sep Sci, 2015, 38:4105-4110.
    Ma P F, Yang W M, Fan T, et al. Surface imprinted polymers for oil denitrification with the combination of computational simulation and multi-template molecular imprinting[J]. Polym Adv Technol, 2015, 26:476-486.
    HummersJr W S, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80:1339.
    O'Mahony J, Wei S T, Molinelli A, et al. Imprinted polymeric materials. Insight into the nature of prepolymerization complexes of quercetin imprinted polymers[J]. Anal Chem, 2006, 78:6187-6190.
    Li L F, Chen L, Zhang H, et al. Temperature and magnetism bi-responsive molecularly imprinted polymers:preparation, adsorption mechanism and properties as drug delivery system for sustained release of 5-fluorouracil[J]. Mat Sci Eng C, 2016, 61:158-168.
    Fu Q, Sanbe H, Kagawa C, et al. Uniformly sized molecularly imprinted polymer for (S)-nilvadipine. Comparison of chiral recognition ability with HPLC chiral stationary phases based on a protein[J]. Anal Chem, 2003, 75:191-198.
    Uzuriaga-Sánchez R J, Khan S, Wong A, et al. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples[J]. Food Chem, 2016, 190:460-467.
    Kozlowska M, Goclon J, Rodziewicz P. Intramolecular hydrogen bonds in low-molecular-weight polyethylene glycol[J]. Chem Phys Chem, 2016, 17:1143-1153.
    Bondi A. Van der Waals volumes and radii[J]. J Phys Chem, 1964, 68:441-451.
    Aparicio S. A systematic computational study on flavonoids[J]. Int J Mol Sci, 2010, 11:2017-2038.
    García G, Atilhan M, Aparicio S. Flavonol-carbon nanostructure hybrid systems:A DFT study on the interaction mechanism and UV/Vis features[J]. Phys Chem Chem Phys, 2016, 18:4760-4771.
    Schniepp H C, Li J L, McAllister M J. Functionalized single graphene sheets derived from splitting graphite oxide[J]. J Phys Chem B, 2006, 110:8535-8539.
    Park S, Ruoff R S. Chemical methods for the production of graphenes[J]. Nat Nanotechnol, 2009, 4:217-224.
    Stankovich S, Piner R D, Nguyen S T, et al. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets[J]. Carbon, 2006, 44:3342-3347.
    Xu S F, Li J H, Chen L X. Molecularly imprinted core-shell nanoparticles for determination of trace atrazine by reversible addition-fragmentation chain transfer surface imprinting[J]. J Mater Chem, 2011, 21:4346-4351.
    Sadeghi S, Jahani M. Selective solid-phase extraction using molecular imprinted polymer sorbent for the analysis of Florfenicol in food samples[J]. Food Chem, 2013, 141:1242-1251.
    Duan F F, Chen C Q, Chen L, et al. Preparation and evaluation of water-compatible surface molecularly imprinted polymers for selective adsorption of bisphenol A from aqueous solution[J]. Ind Eng Chem Res, 2014, 53:14291-14300.
    Bourlinos A B, Gournis D, Petridis D, et al. Graphite oxide:Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids[J]. Langmuir, 2003, 19:6050-6055.
    McAllister M J, Li J L, Adamson D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chem Mater, 2007, 19:4396-4404.
    Kou L, Gao C. Making silica nanoparticle-covered graphene oxide nanohybrids as general building blocks for large-area superhydrophilic coatings[J]. Nanoscale, 2011, 3:519-528.
    Kudin K N, Ozbas B, Schniepp H C, et al. Raman spectra of graphite oxide and functionalized graphene sheets[J]. Nano Lett, 2008, 8, 36-41.
    Zeng Y B, Zhou Y, Zhou T S, et al. A novel composite of reduced graphene oxide and molecularly imprinted polymer for electrochemical sensing 4-nitrophenol[J]. Electrochim Acta, 2014, 130:504-511.
    Baydemir G, Andac M, Bereli N, et al. Selective removal of bilirubin from human plasma with bilirubin-Imprinted particles[J]. Ind Eng Chem Res, 2007, 46:2843-2852.
    Duan F F, Chen C Q, Zhao X F, et al. Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution[J]. Environ Sci-Nano, 2016, 3:213-222.
    Chen J X, Lei S, Xie Y Y, et al. Fabrication of high-performance magnetic lysozyme-imprinted microsphere and its NIR-responsive controlled release property[J]. ACS Appl Mater Inter, 2015, 7:28606-28615.
  • 加载中
图(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  103
  • PDF下载量:  176
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-12
  • 录用日期:  2018-12-27
  • 修回日期:  2018-11-03
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回