留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮掺杂纳米碳管包合铁半限域硫化制备新型锂离子电池负极材料

潘鑫 刘洋 王旭珍 赵宗彬 邱介山

潘鑫, 刘洋, 王旭珍, 赵宗彬, 邱介山. 氮掺杂纳米碳管包合铁半限域硫化制备新型锂离子电池负极材料. 新型炭材料, 2018, 33(6): 544-553. doi: 10.1016/S1872-5805(18)60356-7
引用本文: 潘鑫, 刘洋, 王旭珍, 赵宗彬, 邱介山. 氮掺杂纳米碳管包合铁半限域硫化制备新型锂离子电池负极材料. 新型炭材料, 2018, 33(6): 544-553. doi: 10.1016/S1872-5805(18)60356-7
PAN Xin, LIU Yang, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium ion batteries. New Carbon Mater., 2018, 33(6): 544-553. doi: 10.1016/S1872-5805(18)60356-7
Citation: PAN Xin, LIU Yang, WANG Xu-zhen, ZHAO Zong-bin, QIU Jie-shan. Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium ion batteries. New Carbon Mater., 2018, 33(6): 544-553. doi: 10.1016/S1872-5805(18)60356-7

氮掺杂纳米碳管包合铁半限域硫化制备新型锂离子电池负极材料

doi: 10.1016/S1872-5805(18)60356-7
基金项目: 国家自然科学基金项目(U1610105,51672033,U1610255);辽宁省自然科学基金(201602170).
详细信息
    作者简介:

    潘鑫,硕士.E-mail:panxin@panxin.me

    通讯作者:

    刘洋,博士.E-mail:liuyang_dut@mail.dlut.edu.cn;王旭珍,教授.E-mail:xzwang@dlut.edu.cn

  • 中图分类号: O64

Sulfidation of iron confined in nitrogen-doped carbon nanotubes to prepare novel anode materials for lithium ion batteries

Funds: National Natural Science Foundation of China (U1610105, 51672033, U1610255); Natural Science Foundation of Liaoning Province (201602170).
  • 摘要: 锂离子电池的性能高度依赖于负极材料的性能。由于商业石墨受限于较低的理论容量,开发新型炭材料和金属氧化物/硫化物引起越来越多的关注。黄铁矿(FeS2)具有较大理论储锂容量(894 mAh g-1),而且环保价廉。为了提高黄铁矿的电导率,改善其充/放电过程中的体积变化,合成了纳米碳管限域黄铁矿复合材料(FeS2/N-CNTs)。该材料基于填充有铁纳米线/棒的氮掺杂碳纳米管(Fe/N-CNTs)的独特结构,利用氮掺杂纳米碳管管壁上的缺陷,通过简易的硫化过程,实现了碳管内铁的原位限域硫化转化。所得FeS2/N-CNTs复合物中黄铁矿以两种形态存在,一种是由半开放的氮掺杂碳纳米管包裹的FeS2纳米线,另一种是FeS2纳米颗粒从管腔扩散并附着在碳管外壁上。FeS2/N-CNTs复合物作为锂离子电池的负极材料,表现出高放电容量(996 mAh g-1/0.1 A g-1)和良好的倍率性能,且循环性能优良。
  • Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414:359-367.
    Roberts A D, Li X, Zhang H. Porous carbon spheres and monoliths:morphology control, pore size tuning and their applications as Li-ion battery anode materials[J]. Chemical Society Reviews, 2014, 43:4341-4356.
    Croguennec L, Palacin M R. Recent achievements on inorganic electrode materials for lithium-ion batteries[J]. Journal of the American Chemical Society, 2015, 137:3140-3156.
    Whittingham M S. Lithium batteries and cathode materials[J]. Chemical Reviews, 2004, 104:4271-4302.
    Sawai K, Iwakoshi Y, Ohzuku T. Carbon materials for lithium-ion (shuttlecock) cells[J]. Solid State Ionics, 1994, 69:273-283.
    Wu Z-S, Ren W, Xu L, et al. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries[J]. ACS Nano, 2011, 5:5463-5471.
    Fan Z J, Yan J, Wei T, et al. Nanographene-constructed carbon nanofibers grown on graphene sheets by chemical vapor deposition:high-performance anode materials for lithium ion batteries[J]. ACS Nano, 2011, 5:2787-2794.
    De Las Casas C, Li W. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208:74-85.
    CHEN X-H, SONG H-H., YANG S-B. Preparation and electrochemical properties of nano-Si/C composites[J].New Carbon Materials, 2007:235-241.
    Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J].Nature, 2000, 407:496-499.
    Wang Y, Li X, Zhang Y, et al. Ether based electrolyte improves the performance of CuFeS2 spike-like nanorods as a novel anode for lithium storage[J].Electrochimica Acta, 2015, 158:368-373.
    Ma W, Liu X, Lei X, et al. Micro/nano-structured FeS2 for high energy efficiency rechargeable Li-FeS2 battery[J]. Chemical Engineering Journal, 2018, 334:725-731.
    Yue G, Yan P, Fan X, et al. Structure and properties of cobalt disulfide nanowire arrays fabricated by electrodeposition[J].Electrochemical and solid-state letters, 2007, 10:D29-D31.
    Xu X, Meng Z, Zhu X, et al. Biomass carbon composited FeS2 as cathode materials for high-rate rechargeable lithium-ion battery[J]. Journal of Power Sources, 2018, 380:12-17.
    Li L, Caban-Acevedo M, Girard S N, et al. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries[J].Nanoscale, 2014, 6:2112-2118.
    Tomczuk Z, Tani B, Otto N, et al. Phase relationships in positive electrodes of high temperature Li-Al/LiCl-KCl/FeS2 cells[J].Journal of the Electrochemical Society, 1982, 129:925-931.
    LI F F, LU W, NIU S Z, et al. Preparation and electrochemical performance of a graphene-wrapped carbon/sulphur composite cathode[J].New Carbon Materials, 2014, 4:309-315.
    XU Z, YOU H-H, ZHANG L, et al. Recent development of polysulfide barriers for Li-S batteries[J].New Carbon Materials, 2017:97-105.
    Peng H J, Huang J Q, Cheng X B, et al. Review on high-loading and high-energy lithium-sulfur batteries[J].Advanced Energy Materials, 2017.
    Wu B, Song H, Zhou J, et al. Iron sulfide-embedded carbon microsphere anode material with high-rate performance for lithium-ion batteries[J].Chem Commun (Camb), 2011, 47:8653-8655.
    Rui X, Tan H, Yan Q. Nanostructured metal sulfides for energy storage[J].Nanoscale, 2014, 6:9889-9924.
    Zhang D, Mai Y J, Xiang J Y, et al. FeS2/C composite as an anode for lithium ion batteries with enhanced reversible capacity[J].Journal of Power Sources, 2012, 217:229-235.
    Jun L, Yuren W, Yi W, et al. Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries[J].Advanced Materials, 2014, 26:6025-6030.
    Qiu W D, Xia J, Zhong H M, et al. L-cysteine-assisted synthesis of cubic pyrite/nitrogen-doped graphene composite as anode material for lithium-ion batteries[J].Electrochimica Acta, 2014, 137:197-205.
    Pan X, Bao X. Reactions over catalysts confined in carbon nanotubes[J].Chem Commun (Camb), 2008, 47:6271-6281.
    Chen W, Fan Z, Pan X, et al. Effect of confinement in carbon nanotubes on the activity of fischer-tropsch iron catalyst[J].Journal of the American Chemical Society, 2008, 130:9414-9419.
    Yang Z Q, Guo S J, Pan X L, et al. FeN nanoparticles confined in carbon nanotubes for CO hydrogenation[J].Energy & Environmental Science, 2011, 4:4500-4503.
    Xu L, Hu Y, Zhang H, et al. Confined synthesis of FeS2 nanoparticles encapsulated in carbon nanotube hybrids for ultrastable lithium-ion batteries[J].ACS Sustainable Chemistry & Engineering, 2016, 4:4251-4255.
    Smith B W, Luzzi D E. Formation mechanism of fullerene peapods and coaxial tubes:a path to large scale synthesis[J].Chemical Physics Letters, 2000, 321:169-174.
    Yu K-L, Zou J-J, Ben Y-H, et al. Synthesis of NiO-embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition[J].Diamond and Related Materials, 2006, 15:1217-1222.
    Wang Z, Zhao Z, Qiu J. Carbon nanotube templated synthesis of CeF3 nanowires[J].Chemistry of Materials, 2007, 19:3364-3366.
    Chen W, Pan X, Bao X. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J].Journal of the American Chemical Society, 2007, 129:7421-7426.
    Liu Y, Wang X, Dong Y, et al. Nitrogen-doped graphene nanoribbons for high-performance lithium ion batteries[J].Journal of Materials Chemistry A, 2014, 2:16832-16835.
    Hou J, Cao C, Idrees F, et al. Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors[J].ACS nano, 2015, 9:2556-2564.
    Shao-Horn Y, Osmialowski S, Horn Q C. Reinvestigation of lithium reaction mechanisms in FeS2 pyrite at ambient temperature[J].Journal of the Electrochemical Society, 2002, 149:A1547-A1555.
    Golodnitsky D, Peled E. Pyrite as cathode insertion material in rechargeable lithium/composite polymer electrolyte batteries[J].Electrochimica Acta, 1999, 45:335-350.
    Xue H, Yu D Y W, Qing J, et al. Pyrite FeS2 microspheres wrapped by reduced graphene oxide as high-performance lithium-ion battery anodes[J].J Mater Chem A, 2015, 3:7945-7949.
    Luo J, Liu J, Zeng Z, et al. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability[J].Nano Lett, 2013, 13:6136-6143.
    Liu Z, Lu T, Song T, et al. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries[J].Energy Environ Sci, 2017, 10:1576-1580.
    Jia J, Hu X, Wen Z. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes[J]. Nano Research, 2017, 11:1135-1145.
    Zhang S, Zhu L, Song H, et al. Enhanced electrochemical performance of MnO nanowire/graphene composite during cycling as the anode material for lithium-ion batteries[J]. Nano Energy, 2014, 10:172-180.
    Tian W, Hu H, Wang Y, et al. Metal-organic frameworks mediated synthesis of one-dimensional molybdenum-based/carbon composites for enhanced lithium storage[J]. ACS nano, 2018, 12:1990-2000.
    Zhao C T, Yu C, Zhang M D, et al. Ultrafine MoO2-carbon microstructures enable ultralong-life power-type sodium ion storage by enhanced pseudocapacitance[J].Advanced Energy Materials, 2017, 7.
  • 加载中
图(1)
计量
  • 文章访问数:  372
  • HTML全文浏览量:  122
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-20
  • 录用日期:  2018-12-27
  • 修回日期:  2018-12-02
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回