留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性NiFe2O4纳米颗粒/榛子壳基活性炭复合材料的制备

Milad Jamal Livani Mohsen Ghorbani Hassan Mehdipour

Milad Jamal Livani, Mohsen Ghorbani, Hassan Mehdipour. 磁性NiFe2O4纳米颗粒/榛子壳基活性炭复合材料的制备. 新型炭材料, 2018, 33(6): 578-586. doi: 10.1016/S1872-5805(18)60358-0
引用本文: Milad Jamal Livani, Mohsen Ghorbani, Hassan Mehdipour. 磁性NiFe2O4纳米颗粒/榛子壳基活性炭复合材料的制备. 新型炭材料, 2018, 33(6): 578-586. doi: 10.1016/S1872-5805(18)60358-0
Milad Jamal Livani, Mohsen Ghorbani, Hassan Mehdipour. Preparation of an activated carbon from hazelnut shells and its composites with magnetic NiFe2O4 nanoparticles. New Carbon Mater., 2018, 33(6): 578-586. doi: 10.1016/S1872-5805(18)60358-0
Citation: Milad Jamal Livani, Mohsen Ghorbani, Hassan Mehdipour. Preparation of an activated carbon from hazelnut shells and its composites with magnetic NiFe2O4 nanoparticles. New Carbon Mater., 2018, 33(6): 578-586. doi: 10.1016/S1872-5805(18)60358-0

磁性NiFe2O4纳米颗粒/榛子壳基活性炭复合材料的制备

doi: 10.1016/S1872-5805(18)60358-0
详细信息
    通讯作者:

    Mohsen Ghorbani.E-mail:M.Ghorbani@nit.ac.ir

  • 中图分类号: TB333

Preparation of an activated carbon from hazelnut shells and its composites with magnetic NiFe2O4 nanoparticles

  • 摘要: 以榛子壳为原料,NaOH为化学活化剂,在600℃下,氮气气氛中活化制备出低成本的活性炭,然后分别采用水热法和共沉淀法制备磁性NiFe2O4纳米颗粒,再将NiFe2O4纳米颗粒与活性炭进行水热复合,得到NiFe2O4/活性炭复合材料。采用FESEM、TEM、XRD、FT-IR、氮吸附及磁性测试等手段对样品进行表征。结果表明,与共沉淀法相比,由水热法所制NiFe2O4纳米颗粒具有更高的饱和磁化强度和更小的平均颗粒尺寸。通过水热法复合磁性NiFe2O4纳米颗粒后,活性炭的比表面积和总孔容分别从314降至288 m2/g,0.363 9降至0.333 8 cm3/g。NiFe2O4纳米颗粒与活性炭复合后,其主要分布在活性炭表面,少部分位于内孔中,同时颗粒尺寸无变化。因存在活性炭,复合材料的饱和磁化强度低于纯NiFe2O4。复合材料在室温下展现出超顺磁行为。NiFe2O4纳米颗粒可通过外加磁场从溶液中分离。
  • C Saka. BET, TG-DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2[J]. Journal of Analytical and Applied Pyrolysis, 2012, 95:2124.
    D Özcimen, A Ersoy-Mericboyu. Removal of copper from aqueous solutions by adsorption onto chestnut shell and grapeseed activated carbons[J]. Journal of hazardous materials, 2009, 168:1118-1125.
    A Sencan, M Karaboyaci, M Kiloc. Determination of lead (Ⅱ) sorption capacity of hazelnut shell and activated carbon obtained from hazelnut shell activated with ZnCl2[J]. Environmental Science and Pollution Research, 2015, 22:3238-3248.
    I Kula, M Ugurlu, H Karaoglu, et al. Adsorption of Cd (Ⅱ) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation[J]. Bioresource Technology, 2008, 99:492-501.
    H Dolas, O Sahin, C Saka, et al. A new method on producing high surface area activated carbon:The effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell[J]. Chemical engineering journal, 2011, 166:191-197.
    J Acharya, J Sahu, C Mohanty, et al. Removal of lead (Ⅱ) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation[J]. Chemical Engineering Journal, 2009, 149:249-262.
    J Yang, K Qiu. Preparation of activated carbons from walnut shells via vacuum chemical activation and their application for methylene blue removal[J]. Chemical Engineering Journal, 2010, 165:209-217.
    F Banisheykholeslami, A A Ghoreyshi, M Mohammadi, et al. Synthesis of a carbon molecular sieve from broom corn stalk via carbon deposition of methane for the selective separation of a CO2/CH4 mixture[J]. CLEAN-Soil, Air, Water, 2015, 43:1084-1092.
    O S Bello, M A Ahmad. Adsorption of dyes from aqueous solution using chemical activated mango peels[C]. 2nd International Conference on Environmental Science and Technology (ICEST), 2011, 103-106.
    N Yahaya, M Pakir, M Latiff, et al. Process optimisation for Zn (Ⅱ) removal by activated carbon prepared from rice husk using chemical activation[J]. Int J Eng Technol, 2010, 10:132-136.
    P Nowicki, R Pietrzak, H Wachowska. Sorption properties of active carbons obtained from walnut shells by chemical and physical activation[J]. Catalysis Today, 2010, 150:107-114.
    Li Y F, Liu Y Z, Zhang W K, et al. Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors[J]. Mater Lett, 2015, 157:273-276.
    S Somasundaram, K Sekar, V K Gupta, et al. Synthesis and characterization of mesoporous activated carbon from rice husk for adsorption of glycine from alcohol-aqueous mixture[J]. Journal of Molecular Liquids, 2013, 177:416-425.
    K Foo, B Hameed. Textural porosity, surface chemistry and adsorptive properties of durian shell derived activated carbon prepared by microwave assisted NaOH activation[J]. Chemical engineering journal, 2012, 187:53-62.
    J Xu, P Xin, Y Han, et al. Magnetic response and adsorptive properties for methylene blue of CoFe2O4/CoxFey/activated carbon magnetic composites[J]. Journal of Alloys and Compounds, 2014, 617:622-626.
    K Maaz, S Karim, A Mumtaz, et al. Synthesis and magnetic characterization of nickel ferrite nanoparticles prepared by co-precipitation route[J]. Journal of Magnetism and Magnetic Materials, 2009, 321:1838-1842.
    H Hajihashemi, P Kameli, H Salamati. The effect of EDTA on the synthesis of Ni ferrite nanoparticles[J].Journal of superconductivity and novel magnetism, 2012, 25:2357-2363.
    L Wang, J Ren, Y Wang, et al. Controlled synthesis of magnetic spinel-type nickel ferrite nanoparticles by the interface reaction and hydrothermal crystallization[J]. Journal of Alloys and Compounds, 2010, 490:656-660.
    Z Karcioglu Karakas, R Boncukcuoglu, I H Karakas, et al. The effects of heat treatment on the synthesis of nickel ferrite (NiFe2O4) nanoparticles using the microwave assisted combustion method[J]. Journal of Magnetism and Magnetic Materials, 2015, 374:298-306.
    S A Morrison, C L Cahill, E E Carpenter, et al. Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature[J]. Journal of Applied Physics, 2004, 95:6392-6395.
    E Oumezzine, S Hcini, M Baazaoui, et al. Structural, magnetic and magnetocaloric properties of Zn0.6-xNixCu0.4Fe2O4 ferrite nanoparticles prepared by Pechini sol-gel method[J]. Powder Technology, 2015, 278:189-195.
    M G Naseri, E B Saion, H A Ahangar, et al. Simple preparation and characterization of nickel ferrite nanocrystals by a thermal treatment method[J]. Powder Technology, 2011, 212:80-88.
    B Aslibeiki, P Kameli, H Salamati, et al. Superspin glass state in MnFe2O4 nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2010, 322:2929-2934.
    M Slimi, M Azabou, L Escoda, et al. Structural and microstructural properties of nanocrystalline Cu-Fe-Ni powders produced by mechanical alloying[J]. Powder Technology, 2014, 266:262-267.
    T Xie, L Xu, C Liu. Synthesis and properties of composite magnetic material SrCox Fe12-x O19 (x=0-0.3)[J]. Powder Technology, 2012, 232:87-92.
    S Joshi, M Kumar, S Chhoker, et al. Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method[J]. Journal of Molecular Structure, 2014, 1076:55-62.
    M Srivastava, S Chaubey, A K Ojha. Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol-gel and hydrothermal methods[J]. Materials Chemistry and Physics, 2009, 118:174-180.
    L Fu, C Xu, W Wang, et al. Superparamagnetic nickel ferrite colloidal spheres for constructing magnetically responsive photonic crystals[J]. Materials Letters, 2012, 81:62-64.
    R Chen, W Wang, X Zhao, et al. Rapid hydrothermal synthesis of magnetic CoxNi1-xFe2O4 nanoparticles and their application on removal of Congo red[J]. Chemical Engineering Journal, 2014, 242:226-233.
    T Wang, L Liang, R Wang, et al. Magnetic mesoporous carbon for efficient removal of organic pollutants[J]. Adsorption, 2012, 18:439-444.
    Standard test method for total ash content of activated carbon, designation D2866-94[S].2000.
    H Fu, L Yang, Y Wan, et al. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam[J]. Journal of Environmental Quality, 2011, 40:1886-1894.
    M Sevilla, R Foulston, R Mokaya. Superactivated carbide-derived carbons with high hydrogen storage capacity[J]. Energy & Environmental Science, 2010, 3:223-227.
    L Zhou, L Ji, P -C Ma, et al. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb (Ⅱ)[J]. Journal of Hazardous Materials, 2014, 265:104-114.
    Z Karimi, L Karimi, H. Shokrollahi. Nano-magnetic particles used in biomedicine:core and coating materials[J]. Materials Science and Engineering:C, 2013, 33:2465-2475.
    D S Mathew, R -S Juang. An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions[J]. Chemical Engineering Journal, 2007, 129:51-65.
    S M El-Sheikh, M M Rashad, F A Harraz. Morphological investigation and magnetic properties of nickel zinc ferrite 1D nanostructures synthesized via thermal decomposition method[J]. Journal of Nanoparticle Research, 2013, 15:1-11.
    T D Nguyen, N H Phan, M H Do, et al. Magnetic Fe2MO4 (M:Fe, Mn) activated carbons:fabrication, characterization and heterogeneous Fenton oxidation of methyl orange[J]. Journal of Hazardous Materials, 2011, 185:653-661.
    T Jiang, Y -d Liang, Y-j He, et al. Activated carbon/NiFe2O4 magnetic composite:A magnetic adsorbent for the adsorption of methyl orange[J]. Journal of Environmental Chemical Engineering, 2015, 3:1740-1751.
    M H Do, N H Phan, T D Nguyen, et al. Activated carbon/Fe3O4 nanoparticle composite:Fabrication, methyl orange removal and regeneration by hydrogen peroxide[J]. Chemosphere, 2011, 85:1269-1276.
    N M Mahmoodi, R Salehi, M Arami. Binary system dye removal from colored textile wastewater using activated carbon:Kinetic and isotherm studies[J]. Desalination, 2011, 272:187-195.
    A Rodríguez, J García, G Ovejero, et al. Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions:Equilibrium and kinetics[J]. Journal of Hazardous Materials, 2009, 172:1311-1320.
    M E Fernandez, G V Nunell, P R Bonelli, et al. Activated carbon developed from orange peels:Batch and dynamic competitive adsorption of basic dyes[J]. Industrial Crops and Products, 2014, 62:437-445.
    S Bakhshayesh, H Dehghani. Nickel and cobalt ferrites nanoparticles:synthesis, study of magnetic properties and their use as magnetic adsorbent for removing lead (Ⅱ) ion[J]. Journal of the Iranian Chemical Society, 2014, 11:769-780.
    W Wang, Z Ding, M Cai, et al. Synthesis and high-efficiency methylene blue adsorption of magnetic PAA/MnFe2O4 nanocomposites[J]. Applied Surface Science, 2015, 346:348-353.
    A Baykal, M Günay, M S Toprak, et al. Effect of ionic liquids on the electrical and magnetic performance of polyaniline-nickel ferrite nanocomposite[J]. Materials Research Bulletin, 2013, 48:378-382.
    A Kumar, N Yadav, D S Rana, et al. Structural and magnetic studies of the nickel doped CoFe2O4 ferrite nanoparticles synthesized by the chemical co-precipitation method[J]. Journal of Magnetism and Magnetic Materials, 2015, 394:379-384.
    N F Cardoso, E C Lima, B Royer,et al. Comparison of spirulina platensis microalgae and commercial activated carbon as adsorbents for the removal of Reactive Red 120 dye from aqueous effluents[J]. Journal of Hazardous Materials, 2012, 241:146-153.
    K S Sing. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57:603-619.
  • 加载中
图(1)
计量
  • 文章访问数:  334
  • HTML全文浏览量:  90
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-02
  • 录用日期:  2018-12-27
  • 修回日期:  2018-11-02
  • 刊出日期:  2018-12-28

目录

    /

    返回文章
    返回