留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温处理对中间相沥青基炭纤维结构与热导率的影响

樊桢 曹敏 杨文彬 朱世鹏 冯志海

樊桢, 曹敏, 杨文彬, 朱世鹏, 冯志海. 高温处理对中间相沥青基炭纤维结构与热导率的影响. 新型炭材料, 2019, 34(1): 38-43. doi: 10.1016/S1872-5805(19)60002-8
引用本文: 樊桢, 曹敏, 杨文彬, 朱世鹏, 冯志海. 高温处理对中间相沥青基炭纤维结构与热导率的影响. 新型炭材料, 2019, 34(1): 38-43. doi: 10.1016/S1872-5805(19)60002-8
FAN Zhen, Cao Min, YANG Wen-bin, ZHU Shi-peng, FENG Zhi-hai. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature. New Carbon Mater., 2019, 34(1): 38-43. doi: 10.1016/S1872-5805(19)60002-8
Citation: FAN Zhen, Cao Min, YANG Wen-bin, ZHU Shi-peng, FENG Zhi-hai. The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature. New Carbon Mater., 2019, 34(1): 38-43. doi: 10.1016/S1872-5805(19)60002-8

高温处理对中间相沥青基炭纤维结构与热导率的影响

doi: 10.1016/S1872-5805(19)60002-8
基金项目: 先进功能复合材料技术重点实验室基金.
详细信息
    作者简介:

    樊桢,博士,高级工程师.E-mail:fanandzhen@aliyun.com

    通讯作者:

    冯志海,研究员.E-mail:fengzhh2006@sina.com

  • 中图分类号: TQ536.2

The evolution of microstructure and thermal conductivity of mesophase pitch-based carbon fibers with heat treatment temperature

Funds: Key Laboratory of Advanced Functional Composite Materials Foundation.
  • 摘要: 采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉曼光谱仪(Raman)及X射线衍射仪(XRD)考察了中间相沥青基炭纤维在不同热处理温度下的结构及形貌变化,并采用3 ω法对经不同温度处理后的纤维热导率进行了表征。结果表明,中间相沥青基炭纤维的石墨化度与热导率随着热处理温度的升高而增大,经3 000℃处理后纤维的热导率最高可达518 W/m·K。此外,还探讨了中间相沥青基炭纤维结构、热导率及热处理温度之间的相互关系,发现中间相沥青炭纤维的石墨化过程存在3个阶段,在不同温度区间内分别对应石墨微晶的生长和取向。
  • Sihn S, Ganguli S, Anderson D P, et al. Enhancement of through-thickness thermal conductivity of sandwich construction using carbon foam[J]. Composites Science and Technology, 2012, 72(7):767-773.
    Silva C, University T A, Station C, et al. In-plane thermal conductivity in thin carbon fiber composites[J]. Journal of Thermophysics & Heat Transfer, 2015, 21(3):460-467.
    Li T Q, Xu Z H, Hu Z J, et al. Application of a high thermal conductivity C/C composite in a heat-redistribution thermal protection system[J]. Carbon, 2010, 48(3):924-925.
    Golecki I, Xue L, Leung R, et al. Properties of high thermalconductivity carbon-carbon composites for thermal management applications[C]. High temperature electronic materials, devices and sensors conference. USA:Allied-Signal Inc., Morristown NJ, 1998:190-195.
    Manocha L M, Warrier A, Manocha S, et al. Thermophysical properties of densified pitch based carbon/carbon materials-I. Unidirectional composites[J]. Carbon, 2006, 44(3):480-487.
    Hino T, Akiba M. Japanese development of fusion reaction plasma components[J]. Fusion Engineering and Design, 2000, 49:97-105.
    Murakami M, Nishkin K, Nakamura K, et al. High-quality and highly oriented graphite block from polycondensation polymer films[J]. Carbon, 1992, 30(2):255-262.
    Glass D E. Ceramic matrix composite (CMC) thermal protection systems (TPS) and hot structures for hypersonic vehicles[C]. The 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, 2008:AIAA-2008-2682.
    Edie D D, Pitch and Mesophase Fibers[M]. In:Figueiredo(Eds.), Carbon Fibers, Filaments and Composites, Kluwer Academic Publishers, Boston, 1990:43-72.
    Edie D D, Stoner E G. The Effect of Microstructure and Shape on Carbon Fiber Properties[M]. In:Buckley J D, Edie D D(Eds.), Carbon-Carbon Materials and Composites, Noyes Publications, New York, 1993:41-69.
    Feng Z H, Fan Z, Kong Q, et al. Effect of high temperature on the structure and thermal conductivity of 2D carbon/carbon composites with a high thermal conductivity[J]. New Carbon Materials, 2014, 29(5):357-362.
    Xiao M, Du X S, Meng Y Z, et al. The influence of thermal treatment conditions on the structures and electrical conduct ivies of graphite oxide[J]. New Carbon Materials, 2004, 19(2):92-96.
    Bamborin M Y, Yartsev D V, Kolesnikov S A. Effect of high-temperature treatment on carbon-carbon composite material X-ray structural properties and thermal conductivity[J]. Refractories & Industrial Ceramics, 2013, 54(4):319-323.
    Fan Z, Yu L Q, Li W, et al. Design and preparation of carbon/carbon composites with high thermal conductivity[J]. Materials China, 2017, 36(5):369-376.
    Yuan G M. Research on preparation of carbon materials with high thermal conductivity[D]. Dissertation for Ph. D, Wuhan University of Science and Technology, 2012.
    Wang Z L, Tang D W, Zhang W G. Simultaneous measurements of the thermal conductivity, thermal capacity and thermal diffusivity of an individual carbon fiber[J]. Journal of Physics D-Applied Physics, 2007, 15(40):4686-4690.
    Qiu L, Zheng X H, Zhu J, et al. The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber[J]. Carbon, 2013, 51:265-273.
    Klett J W. Heat transfer in carbon/carbon composite materials[D]. Dissertation for Ph. D, Clemson University, 1994.
    Katagiri G, Ishida H, Ishitani A. Raman spectra of graphite edge planes[J]. Carbon, 1988, 26(4):565-571.
  • 加载中
图(1)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  95
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-02
  • 录用日期:  2019-02-20
  • 修回日期:  2019-01-30
  • 刊出日期:  2019-02-28

目录

    /

    返回文章
    返回