留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯改善铜抗腐蚀性能

章海霞 马琼 王永祯 许并社 郭俊杰

章海霞, 马琼, 王永祯, 许并社, 郭俊杰. 石墨烯改善铜抗腐蚀性能. 新型炭材料, 2019, 34(2): 153-160. doi: 10.1016/S1872-5805(19)60008-9
引用本文: 章海霞, 马琼, 王永祯, 许并社, 郭俊杰. 石墨烯改善铜抗腐蚀性能. 新型炭材料, 2019, 34(2): 153-160. doi: 10.1016/S1872-5805(19)60008-9
ZHANG Hai-xia, MA Qiong, WANG Yong-zhen, XU Bing-she, GUO Jun-jie. Improved corrosion resistance of copper coated by graphene. New Carbon Mater., 2019, 34(2): 153-160. doi: 10.1016/S1872-5805(19)60008-9
Citation: ZHANG Hai-xia, MA Qiong, WANG Yong-zhen, XU Bing-she, GUO Jun-jie. Improved corrosion resistance of copper coated by graphene. New Carbon Mater., 2019, 34(2): 153-160. doi: 10.1016/S1872-5805(19)60008-9

石墨烯改善铜抗腐蚀性能

doi: 10.1016/S1872-5805(19)60008-9
基金项目: 国家自然科学基金(51372160,51242007,51501124);山西省基础研究计划(2015011037,2015021071);山西省留学回国人员科技活动择优资助.
详细信息
    作者简介:

    章海霞,博士,副教授.E-mail:zhanghaixia@tyut.edu.cn

    通讯作者:

    郭俊杰,博士,教授.E-mail:guojunjie@tyut.edu.cn

  • 中图分类号: TQ127.1+1

Improved corrosion resistance of copper coated by graphene

Funds: National Natural Science Foundation of China (51372160, 51242007 and 51501124); Basic Research Project in Shanxi Province (2015011037 and 2015021071); Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province
  • 摘要: 通过常压化学气相沉积法(APCVD)在铜箔表面制备了高质量的石墨烯。采用光学显微镜(OM)、扫描电子显微镜(SEM)、高分辨率透射电镜(HRTEM)、拉曼光谱仪、紫外-可见光谱仪(UV-vis)和X射线光电子能谱仪(XPS)对石墨烯的形貌和结构进行表征,采用极化曲线和电化学阻抗谱对样品的抗腐蚀性能进行测试。结果表明,在1 000℃下,反应5、15 min,分别可以获得单层和三层石墨烯。高质量、连续的三层石墨烯可以有效提高铜箔在空气中的抗氧化性能及其在0.1 mol/L氯化钠溶液中的抗电化学腐蚀性能,但单层石墨烯不能确保铜箔完全不被腐蚀。三层石墨烯对铜的保护程度明显优于单层石墨烯。
  • Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Geim A K, Novoselov K S. The rise of graphene[J]. Nature materials, 2007, 6(3):183-191.
    Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320(5881):1308-1308.
    Li Y F, Liu Y Z, Liang Y, et al. Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors[J]. Applied Physics A Materials Science & Processing, 2017, 123:566.
    Huang X, Qi X, Boey F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2):666-686.
    Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9):611-622.
    Leenaerts O, Partoens B, Peeters F M. Water on graphene:Hydrophobicity and dipole moment using density functional theory[J]. Physical Review B, 2009, 79(23):235440-1-5.
    Liu L, Ryu S, Tomasik M R, et al. Graphene oxidation:Thickness-dependent etching and strong chemical doping[J]. Nano letters, 2008, 8(7):1965-1970.
    Grundmeier G, Schmidt W, Stratmann M. Corrosion protection by organic coatings:Electrochemical mechanism and novel methods of investigation[J]. Electrochimica Acta, 2000, 45:2515-2133.
    Mittal V K, Bera S, Saravanan T, et al. Formation and characterization of bi-layer oxide coating on carbon-steel for improving corrosion resistance[J]. Thin Solid Films, 2009, 517(5):1672-1676.
    Geoffrey M S, Anton J D, Gordon G W, et al. Electroactive conducting polymers for corrosion control[J]. Journal of Solid State Electrochemistry, 2002, 6:85-100.
    Kirkland N T, Schiller T, Medhekar N, et al. Exploring graphene as a corrosion protection barrier[J]. Corrosion Science, 2012, 56:1-4.
    Jia C, Jiang J, Gan L, et al. Direct optical characterization of graphene growth and domains on growth substrates[J]. Scientific Reports, 2012, 2:707.
    Ferrari A C. Raman spectroscopy of graphene and graphite:Disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Communications, 2007, 143(1-2):47-57.
    Gediminas N. Surface-enhanced Raman spectroscopic observation of two kinds of adsorbed OH- ions at copper electrode[J]. Electrochimica Acta, 2000, 45:3507-3519.
    Chen S, Brown L, Levendorf M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2011, 5(2):1321-1327.
    Zhou F, Li Z, Shenoy G J, et al. Enhanced room-temperature corrosion of copper in the presence of graphene[J]. ACS Nano, 2013, 7(8):6939-6947.
    Kear G, Barker B D, Walsh F C. Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corrosion Science, 2004, 46(1):109-115.
    Dube C E, Workie B, Kounaves S P, et al. Electrodeposition of metal alloy and mixed oxide films using a single-precursor tetranuclear copper-nickel complex[J]. Journal of the Electrochemical Society, 1995, 142:3357-3365.
    Poulston S, Parlett P M, Stone P, et al. Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES[J]. Surface and Interface Analysis, 1996, 24(12):811-820.
    Mansfeld F. Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection[J]. Electrochimica Acta, 1990, 35(10):1533-1544.
    Singh Raman R K, Chakraborty Banerjee P, Lobo D E, et al. Protecting copper from electrochemical degradation by graphene coating[J]. Carbon, 2012, 50(11):4040-4045.
  • 加载中
图(1)
计量
  • 文章访问数:  383
  • HTML全文浏览量:  58
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-16
  • 录用日期:  2019-04-30
  • 修回日期:  2019-03-03
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回