留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响

王剑 郭丽娜 林万明 陈津 张帅 陈少达 甄甜甜 张宇阳

王剑, 郭丽娜, 林万明, 陈津, 张帅, 陈少达, 甄甜甜, 张宇阳. 石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响. 新型炭材料, 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0
引用本文: 王剑, 郭丽娜, 林万明, 陈津, 张帅, 陈少达, 甄甜甜, 张宇阳. 石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响. 新型炭材料, 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0
WANG Jian, GUO Li-na, LIN Wan-ming, CHEN Jin, ZHANG Shuai, CHEN Shao-da, ZHEN Tian-tian, ZHANG Yu-yang. The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites. New Carbon Mater., 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0
Citation: WANG Jian, GUO Li-na, LIN Wan-ming, CHEN Jin, ZHANG Shuai, CHEN Shao-da, ZHEN Tian-tian, ZHANG Yu-yang. The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites. New Carbon Mater., 2019, 34(2): 161-169. doi: 10.1016/S1872-5805(19)60009-0

石墨烯含量对铜基复合材料的导电、导热、耐腐蚀和力学性能的影响

doi: 10.1016/S1872-5805(19)60009-0
详细信息
    作者简介:

    王剑,博士研究生.E-mail:466868228@qq.com

    通讯作者:

    陈津,教授.E-mail:chenjin2013815@126.com

  • 中图分类号: TB333

The effects of graphene content on the corrosion resistance, and electrical, thermal and mechanical properties of graphene/copper composites

  • 摘要: 采用电场压力激活辅助合成工艺(Field activated and pressure assisted synthesis process (FAPAS))制备铜基石墨烯复合材料,研究不同的石墨烯含量对铜基体材料的微观结构和性能的影响机理。结果表明,石墨烯的添加能提高材料的位错密度、阻止位错在晶界移动,硬度提升17.6%;由于石墨烯添加量少,对铜基复合材料的位错密度和晶粒尺寸影响有限,片状的石墨烯能有效地弥补制备产生的缺陷,使材料的热导率和电导率分别提升2.9%和4.4%;石墨烯的添加使腐蚀电池两极间的电位差减小,降低了铜离子在氧化膜中的扩散能力,使复合材料的阻抗提升5.3%,腐蚀电流密度下降28.2%,有效地提升了铜基复合材料的耐腐蚀性能。铜基石墨烯复合材料的石墨烯最佳添加量为0.5 wt.%。
  • Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6:183-191.
    Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321:385-388.
    Balandin A A, Ghosh S, Bao W Z, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letter, 2008, 8:902-907.
    Lee C, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2012, 5887:358-338.
    Guo X H, Song K X, Liang S H, et al. Effect of the thermal expansion characteristics of reinforcements on the electrical wear performance of copper matrix composite[J]. Tribology Transactions, 2014, 57(2):283-291.
    Leon C A, Rodriguez-Ortiz G, Nanko M, et al. Pulsed electric current sintering of Cu matrix composites reinforced with plain and coated alumina powders[J]. Powder Technology, 2014, 252(1):1-7.
    Azem S, Nechiche M, Taibi K. Development of copper matrix composite reinforced with FeAl particles produced by combustion synthesis[J]. Powder Technology, 2011, 208(2):515-520.
    Li J, Wang X, Qiao Y, et al. High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scripta Materialia, 2015, 109:72-75.
    Rajkovic V, Bozic D, Stasic J, et al. Processing, characterization and properties of copper-matrix composites strengthened by low amount of alumina particles[J]. Powder Technology, 2014, 268:392-400.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
    Gupta A, Chen G, Joshi P, et al. Eklund, Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12):2667-2673.
    Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006, 97(18):187401.
    Goli P, Ning H, Li X, et al. Thermal properties of graphene-copper-graphene heterogeneous films[J]. Nano Letters, 2014, 14(3):1497-1503.
    Nan C W, Birringer R, Clarke D R, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance[J]. Journal of Applied Physics, 1998, 81(10):6692-6699.
    Gao X, Yue H Y, Guo E, et al. Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites[J]. Powder Technology, 2016, 301:601-607.
    Chen F Y, Ying J M, Wang Y F, et al. Effects of graphene content on the microstructure and properties of copper matrix Composites[J]. Carbon, 2016, 96:836-842.
    Wei J N, Li Z B, Han F S. Thermal mismatch dislocations in macroscopic graphite particle-reinforced metal matrix composites studied by internal friction[J]. Physica Status Solidi, 2015, 191(1):125-136.
  • 加载中
图(1)
计量
  • 文章访问数:  798
  • HTML全文浏览量:  330
  • PDF下载量:  220
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-30
  • 录用日期:  2019-04-30
  • 修回日期:  2019-03-30
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回