留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

KD-S和KD-Ⅱ SiCf/SiC复合材料的制备、微观结构及性能

王洪磊 周新贵 彭述明 张海斌 周晓松

王洪磊, 周新贵, 彭述明, 张海斌, 周晓松. KD-S和KD-Ⅱ SiCf/SiC复合材料的制备、微观结构及性能. 新型炭材料, 2019, 34(2): 181-187. doi: 10.1016/S1872-5805(19)60010-7
引用本文: 王洪磊, 周新贵, 彭述明, 张海斌, 周晓松. KD-S和KD-Ⅱ SiCf/SiC复合材料的制备、微观结构及性能. 新型炭材料, 2019, 34(2): 181-187. doi: 10.1016/S1872-5805(19)60010-7
WANG Hong-lei, ZHOU Xin-gui, PENG Shu-ming, ZHANG Hai-bin, ZHOU Xiao-song. Fabrication, microstructures and properties of SiCf/SiC composites prepared with two kinds of SiC fibers as reinforcements. New Carbon Mater., 2019, 34(2): 181-187. doi: 10.1016/S1872-5805(19)60010-7
Citation: WANG Hong-lei, ZHOU Xin-gui, PENG Shu-ming, ZHANG Hai-bin, ZHOU Xiao-song. Fabrication, microstructures and properties of SiCf/SiC composites prepared with two kinds of SiC fibers as reinforcements. New Carbon Mater., 2019, 34(2): 181-187. doi: 10.1016/S1872-5805(19)60010-7

KD-S和KD-Ⅱ SiCf/SiC复合材料的制备、微观结构及性能

doi: 10.1016/S1872-5805(19)60010-7
基金项目: 国家自然科学基金(51502343,91426304).
详细信息
    通讯作者:

    王洪磊,博士,副教授.E-mail:honglei.wang@163.com

  • 中图分类号: TQ33

Fabrication, microstructures and properties of SiCf/SiC composites prepared with two kinds of SiC fibers as reinforcements

Funds: National Natural Foundation of China(51502343,91426304).
  • 摘要: 以KD-S和KD-Ⅱ型碳化硅(SiC)纤维编织件为增强体,通过先驱体浸渍裂解工艺制备了以热解炭(PyC)为界面涂层的三维(3D)结构SiCf/SiC复合材料,系统研究了SiCf/SiC复合材料的微观结构及性能间的关系。结果表明:KD-S和KD-Ⅱ型SiC纤维均具有晶粒尺寸为8~15 nm的多晶结构;两种SiCf/SiC复合材料的断口表面均出现了纤维拔出现象,说明两种SiC纤维增强的SiCf/SiC复合材料均具有典型的伪塑性断裂行为。KD-S SiCf/SiC复合材料的弯曲强度、弹性模量和断裂韧性分别达到(955.0±42.8) MPa,(110.3±1.7) GPa和(28.5±2.8) MPa·m1/2,明显高于KD-ⅡSiCf/SiC复合材料,这归因于近化学计量比的KD-S型SiC纤维具有较高的模量和耐温性能。由于KD-S和KD-Ⅱ型SiC纤维的结构及成分差异,导致KD-S型SiC纤维表面的PyC界面涂层呈现光滑的多层有序结构,而KD-Ⅱ型SiC纤维表面的PyC为疏松颗粒状结构。
  • Zhao S, Yang Z C, Zhou X G. Fabrication and characterization of in-situ grown carbon nanotubes reinforced SiC/SiC composite[J]. Ceramics International, 2016,42:9264-9269.
    Katoh Y, Snead L L, Henager Jr C H. Current status and recent research achievements in SiC/SiC composites[J]. Journal of Nuclear Materials, 2014, 455:387-397.
    Snead L L, Nozawa T, Ferraris M. Silicon carbide composites as fusion power reactor structural materials[J]. Journal of Nuclear Materials, 2011, 417:330-339.
    Nozawa T, Hinoki T, Hasegawa A. Recent advances and issues in development of silicon carbide composites for fusion applications[J]. Journal of Nuclear Materials, 2009,386-388:622-627.
    Zhou X G, Wang H L, Zhao S. Progress of SiCf/SiC composites for nuclear application[J]. Advanced Ceramics, 2016, 37(3):151-167.
    Bunsell A R, Piant A. A review of the development of three generations of small diameter silicon carbide fibres[J]. Journal of Materials Science, 2006, 41:823-839.
    Takeda M, Sakamoto J, Imai Y. Thermal stability of the low-oxygen-content silicon carbide fiber, Hi-NicalonTM[J]. Composites Science and Technology, 1999, 59:813-819.
    Katoh Y, Ozawa K, Shih C. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications:Properties and irradiation effects[J]. Journal of Nuclear Materials, 2014, 448:448-476.
    Ortona A, Fend T, Yu H W. Fabrication of cylindrical SiCf/Si/SiC-based composite by electrophoretic deposition and liquid silicon infiltration[J]. Journal of the European Ceramic Society, 2014, 34:1131-1138.
    Yoshida K, Akimoto H, Yano T. Mechanical properties of unidirectional and crossply SiCf/SiC composites using SiC fibers with carbon interphase formed by electrophoretic deposition process[J]. Progress in Nuclear Energy 2015, 82:148-152.
    Buet E, Sauder C, Sornin D. Influence of surface fiber properties and textural organization of a pyrocarbon interphase on the interfacial shear stress of SiC/SiC minicomposites reinforced with Hi-Nicalon S and Tyranno SA3 fibres[J]. Journal of the European Ceramic Society, 2014, 34:179-188.
    Blagoeva D T, J Hegeman J B, Jong M. Characterisation of 2D and 3D Tyranno SA3 CVI SiCf/SiC composites[J]. Materials Science and Engineering A, 2015, 638:305-313.
    Shimoda K, Hinoki T, Kohyama A. Effect of additive content on transient liquid phase sintering in SiC nanopowder infiltrated SiCf/SiC composites[J]. Composites Science and Technology, 2011, 71:609-615.
    Morscher G N, John R, Zawada L. Creep in vacuum of woven Sylramic-iBN melt-infiltrated composites[J]. Composites Science and Technology, 2011, 71:52-59.
    Liu H T, Cheng H F, Wang J. Microstructural investigations of the pyrocarbon interphase in SiC fiber-reinforced SiC matrix composites[J]. Materials Letters, 2009, 63(23):2029-2031.
    Chai Y X, Zhou X G, Zhang H Y. Effect of oxidation treatment on KD-Ⅱ SiC fiber-reinforced SiC composites[J]. Ceramics International, 2017, 43:9934-9940.
    Luo Z, Cao H, Ren H. Tension-tension fatigue behavior of a PIP SiC/SiC composite at elevated temperature in air[J]. Ceramics International, 2016, 42:3250-3260.
    Wang H L, Zhou X G, Yu J S. Fabrication of SiCf/SiC composites by chemical vapor infiltration and vapor silicon infiltration[J]. Materials Letters, 2010, 64:1691-1693.
    Shi Y M, Luo F, Ding D H. Effects of thermal oxidation on microwave-absorbing and mechanical properties of SiCf/SiC composites with PyC interphas[J]. Transactions of Nonferrous Metals Society of China, 2015, 25:1484-1489.
    Luo Z, Zhou X G, Yu J S. High-performance 3D SiC/PyC/SiC composites fabricated by an optimized PIP process with a new precursor and a thermal molding method[J]. Ceramics International, 2014, 40:6525-6532.
    Hu Y, Luo F, Duan S C. Mechanical and dielectric properties of SiCf/SiC composites fabricated by PIP combined with CIP process[J]. Ceramics International, 2016, 42:6800-6806.
    Zhao S, Yang Z C, Zhou X G. Microstructure and mechanical properties of compact SiC/SiC composite fabricated with an infiltrative liquid precursor[J]. Journal of American Ceramic Society, 2015, 98(4):1332-1337.
    Shimoo T, Tsukada I, Seguchi T. Effect of firing temperature on the thermal stability of low-oxygen silicon carbide fibers[J]. Journal of American Ceramic Society, 1998, 81(8):2109-2115.
    Takeda M, Imai Y, Ichikawa H. Thermal stability of SiC fiber prepared by an irradiation-curing process[J]. Composites Science and Technology, 1999, 59:793-799.
    Pauw V D, Hawecker J, Schneider R. Dependence of pyrocarbon microstructure on the substrate and annealing during the initial stage of chemical vapor deposition[J]. Carbon, 2008, 46:236-244.
    Bertrand S, Pailler R, Lamon J. Influence of strong fiber/coating interlayers on the mechanical behavior and lifetime of hi-nicalon/(PyC/SiC)n/SiC minicomposites[J]. Journal of American Ceramic Society, 2001, 84:787-94.
  • 加载中
图(1)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  133
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-01
  • 录用日期:  2019-04-30
  • 修回日期:  2019-03-20
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回