留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

特大片鳞片石墨的分选及其制备的柔性石墨

李吉辉 侯诗宇 宿家瑞 李宽 韦鲁滨 马力强 沈万慈 康飞宇 黄正宏

李吉辉, 侯诗宇, 宿家瑞, 李宽, 韦鲁滨, 马力强, 沈万慈, 康飞宇, 黄正宏. 特大片鳞片石墨的分选及其制备的柔性石墨. 新型炭材料, 2019, 34(2): 205-210. doi: 10.1016/S1872-5805(19)60012-0
引用本文: 李吉辉, 侯诗宇, 宿家瑞, 李宽, 韦鲁滨, 马力强, 沈万慈, 康飞宇, 黄正宏. 特大片鳞片石墨的分选及其制备的柔性石墨. 新型炭材料, 2019, 34(2): 205-210. doi: 10.1016/S1872-5805(19)60012-0
LI Ji-hui, HOU Shi-yu, SU Jia-rui, LI Kuan, WEI Lu-bin, MA Li-qiang, SHEN Wan-ci, KANG Fei-yu, HUANG Zheng-hong. Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it. New Carbon Mater., 2019, 34(2): 205-210. doi: 10.1016/S1872-5805(19)60012-0
Citation: LI Ji-hui, HOU Shi-yu, SU Jia-rui, LI Kuan, WEI Lu-bin, MA Li-qiang, SHEN Wan-ci, KANG Fei-yu, HUANG Zheng-hong. Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it. New Carbon Mater., 2019, 34(2): 205-210. doi: 10.1016/S1872-5805(19)60012-0

特大片鳞片石墨的分选及其制备的柔性石墨

doi: 10.1016/S1872-5805(19)60012-0
详细信息
    作者简介:

    李吉辉,博士,助理研究员.E-mail:lijihui@mail.tsinghua.edu.cn

    通讯作者:

    黄正宏,教授.E-mail:zhhuang@mail.tsinghua.edu.cn

  • 中图分类号: TQ165

Beneficiation of ultra-large flake graphite and the preparation of flexible graphite sheets from it

  • 摘要: 为了保护近期中国发现的特大片鳞片石墨矿的超大鳞片不受分选加工过程的破坏,设计出"多破少磨+风选+分级磨浮"的联合工艺,对其进行了物理分选,采用碱熔+酸洗法进一步化学提纯,石墨插层化合物法制备出可膨胀石墨,并利用快速加热法得到膨胀石墨。结果显示,提纯后的特大片鳞片石墨的石墨化度高达99.9%,其膨胀石墨产品的膨胀体积高于400 mL/g,随机选取的膨胀石墨单个颗粒的长度大于40 mm,由此膨胀石墨轧制得的柔性石墨电导率高达2.78×105 S/m。
  • Long Y, Zhang G, Li Z, et al. Research progress of protecting large lateral size of flaky graphite[J]. China Non-metallic Mining Industry Herald, 2013, (02):44-47.
    He P Y, Zhang Z Y, Deng C C. Selective grinding and floating test on flakey graphite in africa[J]. Bulletin of the Chinese Ceramic Society, 2016, (09):2826-2831.
    Huang G P, Sun W H, Chen D M, et al. Mineral exploration & exploitation actuality and mining investment environment of madagascar[J]. Resources Environment & Enginnering, 2015, 29(4):442-448.
    Yin L. Exploration and development progress of globle mineral resource[C]. China Non-metallic Mining Technology and Market Exchanging Conference, 2012.
    Long Y, Zhang G, Li Z, et al. The method to express protecting flaky graphite of grinding effect[J]. China Non-metallic Mining Industry Herald, 2013, (06):32-34+47.
    Tong H, Sun J, Wang L, et al. Study on prebenificiation process to protect flaky graphite[J]. Conservation and Utilization of Mineral Resources, 2010(06):37-39.
    Yue C. Research on speed flotation of flake graphite[J]. Non-metallic Mines, 2007, 30(05):40-41+59.
    Pan J. Improvement of treating technology to raise the grade of graphite ore concentrates and protect big size scales of graphite[J]. China Mining Magazine, 2002, (04):28-30.
    Liu Y, Liu J, Wei J. Study on the process of improving the yield and grade of large lateral size for one flaky graphite ore[J]. Non-metallic Mines, 2003, 26(1):50-51.
    Qu X, Zhang L, Li X. Study on new technology to protect flake graphite by grading for grinding and floating[J]. Non-metallic Mines, 2015, 38(2):53-55.
    Celzard A, Marêché J F, Furdin G. Modelling of exfoliated graphite[J]. Progress in Materials Science, 2005, 50(1):93-179.
    Chung D D L. Interface-derived extraordinary viscous behavior of exfoliated graphite[J]. Carbon, 2014, 68(3):646-652.
    Chen P H, Chung D D L. Viscoelastic behavior of the cell wall of exfoliated graphite[J]. Carbon, 2013, 61(11):305-312.
    Matsumoto R, Okabe Y. Electrical conductivity and air stability of FeCl3, CuCl2, MoCl5, and SbCl5 graphite intercalation compounds prepared from flexible graphite sheets[J]. Synthetic Metals, 2016, 212:62-68.
    Matsumoto R. Investigation of the high, stable electrical conductivity in graphite intercalation compounds prepared from flexible graphite sheets[J]. Synthetic Metals, 2014, 198:107-112.
    Matsumoto R, Arakawa M, Yoshida H, et al. Alkali-metal-graphite intercalation compounds prepared from flexible graphite sheets exhibiting high air stability and electrical conductivity[J]. Synthetic Metals, 2012, 162(23):2149-2154.
    Matsumoto R, Nakajima M, Takano Y, et al. Superconductive CaC6 prepared from flexible graphite sheets[J]. Solid State Communications, 2012, 152(9):767-770.
    Chen P H, Chung D D L. Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure[J]. Carbon, 2014, 77:538-550.
    Wei L, Zeng M. Separation and classification equipment for fine materials[P]. CN patent 201310045445, 2013.
    Mering J, Maire J. Le processus de la graphitation[J]. Journal de Chimie Physique Et de Physico-chimie Biologique, 1960, 57(10):803-814.
    Sasikala SP, Poulin P, Aymonier C. Advances in subcritical hydro-/solvothermal processing of graphene materials[J]. Advanced Materials, 2017, 1605473.
    Wei X h, Liu L, Zhang J X, et al. Synthesis of HClO4-GICs and the performance of flexible graphites produced from them[J]. New Carbon Materials, 2007, 22(4):342-348.
  • 加载中
图(1)
计量
  • 文章访问数:  396
  • HTML全文浏览量:  123
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-01
  • 录用日期:  2019-04-30
  • 修回日期:  2019-03-31
  • 刊出日期:  2019-04-28

目录

    /

    返回文章
    返回