留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

四氢萘为良溶剂液/液界面法制备多级C60晶体

张琳雯 周升菊 陈孟军 尹克样 李洪光

张琳雯, 周升菊, 陈孟军, 尹克样, 李洪光. 四氢萘为良溶剂液/液界面法制备多级C60晶体. 新型炭材料, 2019, 34(3): 238-246. doi: 10.1016/S1872-5805(19)60013-2
引用本文: 张琳雯, 周升菊, 陈孟军, 尹克样, 李洪光. 四氢萘为良溶剂液/液界面法制备多级C60晶体. 新型炭材料, 2019, 34(3): 238-246. doi: 10.1016/S1872-5805(19)60013-2
ZHANG Lin-wen, ZHOU Sheng-ju, CHEN Meng-jun, YIN Ke-yang, LI Hong-guang. Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent. New Carbon Mater., 2019, 34(3): 238-246. doi: 10.1016/S1872-5805(19)60013-2
Citation: ZHANG Lin-wen, ZHOU Sheng-ju, CHEN Meng-jun, YIN Ke-yang, LI Hong-guang. Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent. New Carbon Mater., 2019, 34(3): 238-246. doi: 10.1016/S1872-5805(19)60013-2

四氢萘为良溶剂液/液界面法制备多级C60晶体

doi: 10.1016/S1872-5805(19)60013-2
基金项目: 国家自然科学基金(61474124).
详细信息
    作者简介:

    张琳雯,硕士研究生.E-mail:zhanglinwen@licp.cas.cn

    通讯作者:

    李洪光,研究员.E-mail:hgli@sdu.edu.cn

  • 中图分类号: TQ127.1+1

Hierarchically-organized C60 crystals obtained from a liquid/liquid interfacial precipitation method by using 1,2,3,4-tetrahydronaphthalene as a solvent

Funds: National Natural Science Foundation of China (61474124).
  • 摘要: 采用液/液界面法制备了不同形貌的多级C60结构。以四氢萘作良溶剂,异丙醇、乙醇、甲醇作不良溶剂,通过优化实验条件,成功制备了形貌特殊、界面清晰的C60晶体结构。此晶体表面粗糙度能通过乙醇洗涤得到进一步提高。通过对晶体内部形貌的观察,证实了晶体的多级自组装结构。红外、拉曼光谱和热重分析表明晶体仅由C60组成,不含溶剂分子。在纳米尺度上,通过X-射线衍射证实了分子水平上C60分子按照面心立方结构方式排列。此法制备的多级结构C60晶体比高温转变、溶剂热处理等方法更为简易,为多级材料制备提供了一条新路径。
  • Shrestha L K, Hill J P, Miyazawa K, et al. Mixing antisolvents induced modulation in the morphology of crystalline C60[J]. J Nanosci Nanotechnol, 2012, 12:6380-6384.
    Shrestha, L K, Ji Q, et al. Fullerene nanoarchitectonics:From zero to higher dimensions[J]. Chem Asian J, 2013, 8:1662-1679.
    Macovez R. Physical properties of organic fullerene cocrystals[J]. Front Mater, 2018, 4:1-7.
    Li H Y, Fan C C, Vosgueritchian M, et al. Solution-grown aligned C60single-crystals for field-effect transistors[J]. J Mater Chem C, 2014, 2:3617-3624.
    Li H Y, Tee B C, Cha J J, et al. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals[J]. J Am Chem Soc, 2012, 134:2760-2765.
    Ogawa K, Kato T, Ikegami A, et al. Electrical properties of field-effect transistors based on C60 nanowhiskers[J]. Appl Phys Lett, 2006, 88:1-3.
    P R Somani, Somani S P, Umeno M. Toward organic thick film solar cells:Three dimensional bulk heterojunction organic thick film solar cell using fullerene single crystal nanorods[J]. Appl Phys Lett, 2007, 91:173503.
    Wang Q, Zhang Y, Miyazawa K, et al. Improved fullerene nanofiber electrodes used in direct methanol fuel cells[J]. J Phys:Conf Ser, 2009, 159:1-5.
    Takeya H, Kato R, Wakahara T, et al. Preparation and superconductivity of potassium-doped fullerene nanowhiskers[J]. Mater Res Bull, 2013, 48:343-345.
    Shrestha R G, Shrestha L K, Khan A H, et al. Demonstration of ultrarapid interfacial formation of 1D fullerene nanorods with photovoltaic properties[J]. Acs Appl Mater Interfaces, 2014, 6:15597-15603.
    Rana M, Reddy R B, Rath B B, et al. C60-mediated molecular shape sorting:Separation and purification of geometrical isomers[J]. Angew Chem Int Ed, 2014, 53:13523-13527.
    Wang L, Liu B B, Yu S D, et al. Highly enhanced luminescence from single-crystalline C60·1m-xylene nanorods[J]. Chem Mater, 2006, 18:4190-4194.
    Shin H S, Yoon S M, Tang Q, et al. Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process[J]. Angew Chem Int Ed, 2008, 47:693-696.
    Kim J, Park C, Park J E, et al. Vertical crystallization of C60 nanowires by solvent vapor annealing process[J]. Acs Nano, 2013, 7:9122-9128.
    Liu H B, Li Y L, Jiang L, et al. Imaging as-grown. fullerene nanotubes by template technique[J]. J Am Chem Soc, 2002, 124:13370-13371.
    Wang L, Liu B, Liu D Y, et al. Synthesis of thin, rectangular C60 nanorods using m-xylene as a shape controller[J]. Adv Mater, 2006, 18:1883-1888.
    Geng J F, Zhou W Z, Skelton P, et al. Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires[J]. J Am Chem Soc, 2008, 130:2527-2534.
    Park C, Song H J, Choi H C. The critical effect of solvent geometry on the determination of fullerene (C60) self-assembly into dot, wire and disk structures[J]. Chem Commun, 2009, 32:4803-4805.
    Yao M, Andersson B M, Stenmark P, et al. Synthesis and growth mechanism of differently shaped C60 nano/microcrystals produced by evaporation of various aromatic C60 solutions[J]. Carbon, 2009,47:1181-1188.
    Gnanaprakasa T J, Sridhar D, Beck W J, et al. Graphene mediated self-assembly of fullerene nanorods[J]. Chem Commun, 2015, 51:1858-1861.
    Muralidharan K. Graphene mediated self-assembly of fullerene nanorods[J]. Chem Commun, 2015, 51:1858-1861.
    Miyazawa K, Kuwasaki Y, Obayashi A, et al. C60 nanowhiskers formed by the liquid-liquid interfacial precipitation method[J]. J Mater Res, 2002, 17:83-88.
    Sathish M, Miyazawa K, Sasaki T. Nanoporous fullerene nanowhiskers[J]. Chem Mater, 2007, 19:2398-2400.
    Sathish M, Miyazawa K. Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface[J]. J Am Chem Soc, 2007, 129:13816-13817.
    Ji H X, Hu J S, Tang Q X, et al. Controllable preparation of submicrometer single-crystal C60 rods and tubes trough concentration depletion at the surfaces of seeds[J]. J Phys Chem C, 2007, 111:10498-10502.
    Sathish M, Miyazawa K, Hill J P, et al. Solvent engineering for shape-shifter pure fullerene (C60)[J]. J Am Chem Soc, 2009, 131:6372-6373.
    Wakahara T, Miyazawa K, Nemoto Y, et al. Diameter controlled growth of fullerene nanowhiskers and their optical properties[J]. Carbon, 2011, 49:4644-4649.
    Shrestha L K, Yamauchi Y, Hill J P, et al. Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores[J]. J Am Chem Soc, 2013, 135:586-589.
    Shrestha L K, Hill J P, Tsuruoka T, et al. Surfactant-assisted assembly of fullerene (C60) nanorods and nanotubes formed at a liquid-liquid interface[J]. Langmuir, 2013, 29:7195-7202.
    Rana M, Bharathanatha R R, Gautam U K. Kinetically stabilized C60-toluene solvate nanostructures with a discrete absorption edge enabling supramolecular topotactic molecular exchange[J]. Carbon, 2014, 74:44-53.
    Tan Z, Masuhara A, Kasai H, et al. Multibranched C60 micro/nanocrystals fabricated by reprecipitation method[J]. Jpn J Appl Phys, 2008, 47:1426-1428.
    Penterman S J, Singh A, Zipfel W R, et al. Anisometric colloidal fullerene rod and platelet solvates with enhanced photoluminescence[J]. Adv Optical Mater, 2014, 2:1024-1030.
    Jeong J Y, Kim W S, Park S I, et al. Synthesis and characterization of various-shaped C60 microcrystals using alcohols as antisolvents[J]. J Phys Chem C, 2010, 114:12976-12981.
    Wei L, Yao J N, Fu H B. Solvent-assisted self-assembly of fullerene into single-crystal ultrathin microribbons as highly sensitive uv-visible photodetectors[J]. ACS Nano, 2013, 7:7573-7582.
    Zheng S, Lu X. Formation kinetics and photoelectrochemical properties of crystalline C70 one-dimensional microstructures[J]. Rsc Advances, 2015, 5:38202-38208.
    Penterman S J, Watson C M L. Anisometric C60 fullerene colloids assisted by structure-directing agent[J]. CrystEngComm, 2016, 18:1775-1781.
    Cha S I, Miyazawa K, Kim J D. Vertically well-aligned C60 microtube crystal array prepared using a solution-based one-step process[J]. Chem Mater, 2008, 20:1667-1669.
    Zhang C, Wang J, Wang J J, et al. Supramolecular gel-assisted formation of fullerene nanorods[J]. Chem Eur J, 2012, 18:14954-14956.
    Vimalanathan K, Shrestha R G, Zhang Z. Surfactant-free fabrication of fullerene C60 nanotubules under shear[J]. Angew Chem Int Ed, 2017, 56:8398-8401.
    Ruoff R S, Tse D S, Malhotra R, et al. Solubility of C60 in a variety of solvents[J]. J Phys Chem, 1993, 97:3379-3383.
    Bairi P, Minami K, Nakanishi W, et al. Hierarchically structured fullerene C70 cube for sensing volatile aromatic solvent vapors[J]. ACS Nano, 2016, 10:6631-6637.
    Shrestha L K, Shrestha R G, Yamauchi Y, H et al. Nanoporous carbon tubes from fullerene crystals as theπ[WTB1] -electron carbon source[J]. Angew Chem Int Ed, 2015, 54:951-955.
    Yao M, Fan X, Liu D, et al. Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence[J]. Carbon, 2012, 50:209-215.
    David W, Ibberson R M, Mattewman J C, et al. Crystal structure and bonding of ordered C60[J]. Nature, 1991,353:147-149.
    Sathish M, Miyazawa K. Synthesis and characterization of fullerene nanowhiskers by liquid-liquid interfacial precipitation:influence of C60 solubility[J]. Molecules, 2012, 17:3858-3865.
    Wang K A, Rao A M, Eklund P C. Observation of higher-order infrared modes in solid C60 films[J]. Phys Rev B, 1993, 48:11375-11380.
    Bethune D S, Meijer G, Tang W C, et al. Vibrational raman and infrared spectra of chromatographically separated C60 and C70 fullerene clusters[J]. Chem Phys Lett, 1991, 179:181-186.
  • 加载中
图(1)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  61
  • PDF下载量:  164
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-30
  • 录用日期:  2019-06-27
  • 修回日期:  2019-06-01
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回