留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大蒜皮基多孔炭材料的水热法制备及其CO2吸附性能

黄格格 刘亦菲 吴星星 蔡进军

黄格格, 刘亦菲, 吴星星, 蔡进军. 大蒜皮基多孔炭材料的水热法制备及其CO2吸附性能. 新型炭材料, 2019, 34(3): 247-257. doi: 10.1016/S1872-5805(19)60014-4
引用本文: 黄格格, 刘亦菲, 吴星星, 蔡进军. 大蒜皮基多孔炭材料的水热法制备及其CO2吸附性能. 新型炭材料, 2019, 34(3): 247-257. doi: 10.1016/S1872-5805(19)60014-4
HUANG Ge-ge, LIU Yi-fei, WU Xing-xing, CAI Jin-jun. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater., 2019, 34(3): 247-257. doi: 10.1016/S1872-5805(19)60014-4
Citation: HUANG Ge-ge, LIU Yi-fei, WU Xing-xing, CAI Jin-jun. Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance. New Carbon Mater., 2019, 34(3): 247-257. doi: 10.1016/S1872-5805(19)60014-4

大蒜皮基多孔炭材料的水热法制备及其CO2吸附性能

doi: 10.1016/S1872-5805(19)60014-4
基金项目: 国家自然科学基金(21506184);湖南省自然科学基金(2019JJ50597);中南大学粉末冶金国家重点实验室开放基金;"环境友好与资源高效利用化工新技术"湖南省2011协同创新中心资助项目.
详细信息
    通讯作者:

    蔡进军,副教授.E-mail:caijj@xtu.edu.cn

  • 中图分类号: X712

Activated carbons prepared by the KOH activation of a hydrochar from garlic peel and their CO2 adsorption performance

Funds: National Natural Science Foundation of China (21506184); Natural Science Foundation of Hunan Province (2019JJ50597); State Key Laboratory of Powder Metallurgy of Central South University; Hunan 2011 Collaborative Innovation Center of Chemical Engineering with Environmental Benignity and Effective Resource Utilization.
  • 摘要: 以大蒜皮为碳源,先采用水热法制备炭前驱体,再经KOH活化法制备了高比表面积和高孔体积的多孔炭材料。采用氮气吸附仪、扫描电子显微镜(SEM)和X-射线衍射(XRD)仪对所制多孔炭的孔结构和形貌特性进行表征。结果表明,活化温度对多孔炭材料的比表面积和孔体积影响较大,当活化温度为800℃和KOH/炭前驱体浓度比为2时,得到的多孔炭材料(AC-28)比表面积和孔体积分别高达1 262 m2/g和0.70 cm3/g;当活化温度为600℃和KOH/炭前驱体浓度比为2时,多孔炭材料(AC-26)比表面积和孔体积分别为947 m2/g和0.51 cm3/g。虽然AC-26样品的比表面积和孔体积均较低,但其微孔率高达98%,使得此材料CO2吸附性能优异,在25℃和1 bar时的CO2吸附量高达4.22 mmol/g。常压下影响多孔炭材料中CO2吸附量的主要因素是微孔率,并不是由比表面积和孔体积决定。当具有合适的孔径结构和比表面积时,生物质基多孔炭材料中微孔率的增加会有效增加CO2吸附量。
  • Cai J, Qi J, Yang C, et al. Poly(vinylidene chloride)-based carbon with ultrahigh microporosity and outstanding performance for CH4 and H2 storage and CO2 capture[J]. ACS Applied Materials & Interfaces, 2014, 6(5):3703-3711.
    Regufe M J, Ferreira A F P, Loureiro J M, et al. New hybrid composite honeycomb monolith with 13X zeolite and activated carbon for CO2 capture[J]. Adsorption, 2018, 24(3):249-265.
    Yang S, Zhan L, Xu X, et al. Graphene-based porous silica sheets impregnated with polyethyleneimine for superior CO2 capture[J]. Advanced Materials, 2013, 25(15):2130-2134.
    Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture[J]. Energy & Environmental Science, 2011, 4(3):1765-1771.
    Yue L, Xia Q, Wang L, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell[J]. Journal of Colloid and Interface Science, 2018, 511:259-267.
    Wang Z, Zhan L, Ge M, et al. Pith based spherical activated carbon for CO2 removal from flue gases[J]. Chemical Engineering Science, 2011, 66(22):5504-5511.
    Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the Americal Chemical Society, 2005, 127(51):17998-17999.
    Heydari-Gorji A, Sayari A. Thermal, oxidative, and CO2-induced degradation of supported polyethylenimine adsorbents[J]. Industrial & Engineering Chemistry Research, 2012, 51(19):6887-6894.
    Shen C, Yu J, Li P, et al. Capture of CO2 from flue gas by vacuum pressure swing adsorption using activated carbon beads[J]. Adsorption, 2011, 17(1):179-188.
    Singh G, Kim I Y, Lakhi K S, et al. Heteroatom functionalized activated porous biocarbons and their excellent performance for CO2 capture at high pressure[J]. Journal of Materials Chemistry A, 2017, 5(40):21196-21204.
    Wei H, Chen H, Fu N, et al. Excellent electro-chemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells[J]. Electrochimica Acta, 2017, 231:403-411.
    Sun Y, Webley P A. Preparation of activated carbons from corncob with large specific surface area by a variety of chemical activators and their application in gas storage[J]. Chemical Engineering Journal, 2010, 162(3):883-892.
    Liu R, Ji W, He T, et al. Fabrication of nitrogen-doped hierarchically porous carbons through a hybrid dual-template route for CO2 capture and haemoperfusion[J]. Carbon, 2014, 76:84-95.
    Li D, Ma T, Zhang R, et al. Preparation of porous carbons with high low-pressure CO2 uptake by KOH activation of rice husk char[J]. Fuel, 2015, 139:68-70.
    Li K, Tian S, Jiang J, et al. Pine cone shell-based activated carbon used for CO2 adsorption[J]. Journal of Materials Chemistry A, 2016, 4(14):5223-5234.
    Wu X, Zhang C, Tian Z, et al. Large-surface-area carbons derived from lotus stem waste for efficient CO2 capture[J]. New Carbon Materials, 2018, 33(3):252-261.
    Almahdi A A, Hatsuo I, Syed Q. Carbon aerogels with excellent CO2 adsorption capacity synthesized from clay-reinforced biobased chitosan-polybenzo-xazine nano-composites[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(3):1286-1295.
    Deng S, Hu B, Chen T, et al. Activated carbons prepared from peanut shell and sunflower seed shell for high CO2 adsorption[J]. Adsorption, 2015, 21(1-2):125-133.
    Tian Z, Xiang M, Zhou J, et al. Nitrogen and oxygen-doped hierarchical porous carbons from algae biomass:Direct carbonization and excellent electrochemical properties[J]. Electrochimica Acta, 2016, 211:225-233.
    Wang J, Kaskel S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45):23710-23725.
    Spigarelli B P, Kawatra S K. Opportunities and challenges in carbon dioxide capture[J]. Journal of CO2 Utilization, 2013, 1:69-87.
    Balahmar N, Al-Jumialy A S, Mokaya R. Biomass to porous carbon in one step:directly activated biomass for high performance CO2 storage[J]. Journal of Materials Chemistry A, 2017, 5(24):12330-12339.
    Jahagirdar D V, Nigal J N. Adsorption of Cd2+ and Pb2+ on agricultural byproducts[J]. Asian Journal of Chemistry, 1997, 9(1):122-125.
    Hameed B H, Ahmad A A. Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass[J]. Journal of Hazardous Materials, 2009, 164(2-3):870-875.
    Reddy J P, Rhim J W. Isolation and characterization of cellulose nanocrystals from garlic skin[J]. Materials Letters, 2014, 129:20-23.
    Selvamani V, Ravikumar R, Suryanarayanan V, et al. Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell[J]. Electrochimica Acta, 2016, 190:337-345.
    Zhang Q, Han K, Li S, et al. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale, 2018, 10(5):2427-2437.
    Huang G, Wu X, Hou Y, et al. Sustainable porous carbons from garlic peel biowaste and KOH activation with an excellent CO2 adsorption performance[J]. Biomass Conversion Biorefinery, 2019, doi: 10.1007/s13399-019-00412-6.
    Wang D, Liu S, Fang G, et al. From trsh to treasure:Direct transformation of onion husks into three-dimensional interconnected porous carbon frameworks for high-performance supercapacitors in organic electrolyte[J]. Electrochimica Acta 2016, 216:405-411.
    Sun W, Lipka S M, Swartz C, et al. Hemp-derived activated carbons for supercapacitors[J]. Carbon, 2016, 103:181-192.
    Titirici M M, White R J, Brun N, et al. Sustainable carbon materials[J]. Chemical Society of Reviews, 2015, 44(1):250-290.
    Yue L, Rao L, Wang L, et al. Efficient CO2 capture by nitrogen-doped biocarbons derived from rotten strawberries[J]. Industrial & Engineering Chemistry Research, 2017, 56(47):14115-14122.
    Wei H, Deng S, Hu B, et al. Granular bamboo-derived activated carbon for high CO2 adsorption:the dominant role of narrow micropores[J]. ChemSusChem, 2012, 5(12):2354-2360.
    Zhang Z, Wang K, Atkinson J D, et al. Sustainable and hierarchical porous enteromorpha prolifera based carbon for CO2 capture[J]. Journal of Hazardous Materials, 2012, 229-230:183-191.
    Boyjoo Y, Cheng Y, Zhong H, et al. From waste Coca Cola® to activated carbons with impressive capabilities for CO2 adsorption and supercapacitors[J]. Carbon, 2017, 116:490-499.
    Plaza M G, Pevida C, Arias B, et al. Development of low-cost biomass-based adsorbents for post-combustion CO2 capture[J]. Fuel, 2009, 88(12):2442-2447.
    Dobele G, Dizhbite T, Gil M V, et al. Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture[J]. Biomass Bioenergy, 2012, 46:145-154.
    Primo A, Forneli A, Corma A, et al. From biomass wastes to highly efficient CO2 adsorbents:Graphitisation of chitosan and alginate biopolymers[J]. Chem Sus Chem, 2012, 5(11):2207-2214.
    Wei H, Chen J, Fu N, et al. Biomass-derived nitrogen-doped porous carbon with superior capacitive performance and high CO2 capture capacity[J]. Electrochim Acta, 2018, 266:161-169.
    Xing W, Liu C, Zhou Z, et al. Oxygen-containing functional group-facilitated CO2 capture by carbide-derived carbons[J]. Nanoscale Research Letters, 2014, 9:189.
    Ello A S, de Souza L K C, Trokourey A, et al. Coconut shell-based microporous carbons for CO2 capture[J]. Microporous and Mesoporous Materials, 2013, 180:280-283.
  • 加载中
图(1)
计量
  • 文章访问数:  768
  • HTML全文浏览量:  268
  • PDF下载量:  293
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-02
  • 录用日期:  2019-06-27
  • 修回日期:  2019-06-02
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回