留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粉体石墨烯对铝基复合材料微观结构和性能的影响

王剑 郭丽娜 林万明 陈津 刘春莲 陈少达 张帅 甄甜甜

王剑, 郭丽娜, 林万明, 陈津, 刘春莲, 陈少达, 张帅, 甄甜甜. 粉体石墨烯对铝基复合材料微观结构和性能的影响. 新型炭材料, 2019, 34(3): 275-285. doi: 10.1016/S1872-5805(19)60016-8
引用本文: 王剑, 郭丽娜, 林万明, 陈津, 刘春莲, 陈少达, 张帅, 甄甜甜. 粉体石墨烯对铝基复合材料微观结构和性能的影响. 新型炭材料, 2019, 34(3): 275-285. doi: 10.1016/S1872-5805(19)60016-8
WANG Jian, GUO Li-na, LIN Wan-ming, CHEN Jin, LIU Chun-lian, CHEN Shao-da, ZHANG Shuai, ZHEN Tian-tian. Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. New Carbon Mater., 2019, 34(3): 275-285. doi: 10.1016/S1872-5805(19)60016-8
Citation: WANG Jian, GUO Li-na, LIN Wan-ming, CHEN Jin, LIU Chun-lian, CHEN Shao-da, ZHANG Shuai, ZHEN Tian-tian. Effect of the graphene content on the microstructures and properties of graphene/aluminum composites. New Carbon Mater., 2019, 34(3): 275-285. doi: 10.1016/S1872-5805(19)60016-8

粉体石墨烯对铝基复合材料微观结构和性能的影响

doi: 10.1016/S1872-5805(19)60016-8
详细信息
    作者简介:

    王剑,博士研究生.E-mail:466868228@qq.com

    通讯作者:

    陈津,教授,博士生导师.E-mail:chenjin2013815@126.com

  • 中图分类号: TB333

Effect of the graphene content on the microstructures and properties of graphene/aluminum composites

  • 摘要: 采用机械合金化与电场压力激活辅助烧结工艺相结合的方式,分别制备纯Al和GNPs/Al复合材料,探究粉体石墨烯对铝基复合材料微观结构和性能的影响。结果表明:通过优化烧结工艺有效地抑制化合物Al4C3在GNPs/Al复合材料中的形成,提高石墨烯与Al基体的界面结合强度。石墨烯添加量为0.5wt.%时,在Al基体晶界处能够均匀的分散,由于石墨烯与Al基体有良好的界面润湿性,促进声子在基体材料中的移动,降低材料的界面热阻,在GNPs/Al复合材料表面形成导电网络,提高电子的迁移率和平均自由程,使GNPs/Al复合材料的热导率和电导率分别提升7.1%和4%;添加石墨烯能改变Al基体材料的晶体结构,在石墨烯周围形成晶格畸变的应力场,该应力场与位错应力场产生交互作用,使位错运动受阻,GNPs/Al复合材料的强度和硬度分别提升30.6%和44%;石墨烯能降低基体材料界面电容的介电损耗,在Al基体材料表面形成致密平整的膜层,提高GNPs/Al复合材料的电荷传递电阻,降低材料表面在电化学腐蚀过程中的弥散效应,使GNPs/Al复合材料耐腐蚀性能提高31%。石墨烯含量超过0.5 wt.%时,团聚在基体晶界的石墨烯,降低复合材料的界面结合强度,使GNPs/Al复合材料导带中的能带宽度变窄,电子的局域性增强,导致GNPs/Al复合材料的性能下降。综上所述,粉体石墨烯的最佳添加量为0.5wt.%。
  • Wu R J. The present condition and prospects on metal matrix composites[J]. ACTA Metallurgica Sinica, 1997, 65(1):78-84.
    Bai Y, Han E H, Tan R B. Reasearch on properties of Aluminum Matrix Composites[J]. Materials Protection, 2003, 36(9):5-7.
    Huang B Y, Xiao P, Chen K H. New progress in composites research[J]. Metal World, 2007, 2:46-48.
    Zhang S Y, Meng F Q, Chen Y Y, et al. Research progress of metal matrix composites reinforced with particles[J]. Materials Review, 1996, 10(2):66-71.
    Jiang S H, Wang H H, Yuan H B, et al. The feature of MMCs and its prospects of application in engineering[J]. Automobile Science and Technology, 2002, (6):21-24.
    Gupta A, Chen G, Joshi P, et al. Raman scattering from high-frequency phonons in supported n-graphene layer films[J]. Nano Letters, 2006, 6(12):2667-2673.
    Ferrari A.C, Meyer J.C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Physical Review Letters, 2006(97)18:187401.
    Lloyd D J. Particle reinforced aluminum and magnesium matrix composites[J]. International Materials Reviews, 1994, 39(1):1-23.
    Liao X J. The Preparation and Thermal Conductivity of Graphene/Al Composites[D]. Jiang Xi:Nanchang Hangkong University, 2016.
    Luo H. Research on the microstructure and properties of graphene nanoplatelets reinforced Aluminum matrix composites[D]. Harbin:Harbin Institute of Technology, 2015.
    Li M, Gao H Y, Liang J M, et al. Microstructure evolution and properties of graphene nanoplatelets reinforced aluminum matrix composites[J]. Materials Characterization, 2018, 140:172-178.
    Liu J, Umar K, Jonathan C, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites:powder synthesis and prepared composite characteristics[J]. Materials and Design, 2016, 94:87-94.
    Wang J, Li Z, Fan G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materialia, 2012, 66(8):594-597.
    Zhang L, Hou G M, Zhai W, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles[J]. Journal of Alloys and Compounds, 2018, 748:854-860.
    Krishnamoorthy K, Jeyasubramanian K, Premanathan M, et al. Graphene oxide nanopaint[J]. Carbon, 2014, 72:328-337.
    Prasai D, Tuberquia J.C, Harl R.R, et al. Graphene:corrosion-inhibiting coating[J]. ACS Nano, 2012, 6:1102-1108.
    Hikku G.S, Jeyasubramanian K, Rahul G, et al. Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy[J]. Journal of Alloys and Compounds, 2017, 716:259-269.
    Ramachandra M, Radhakrishna K. Effect of reinforcement of flyash on sliding wear, slurry erosive wear and corrosive behavior of aluminium matrix composite[J]. Wear, 2007, 262(11):1450-1462.
    Wang B S, Lu Y Z, Cui Y. Dry Sliding Tribological Behavior of SiCp/Al Composites Against Semi-metallic Brake Pad[J]. Journal of Materials Engineering, 2007(6):7-10.
    Porwal H, Tatarko P, Grasso S, et al. Graphene reinforced alumina nano-composites[J]. Carbon, 2013, 64(11):359-369.
    Francois L, Jerome W, Thiebaud R. Hall Petch Law Revisited in Terms of Collective Dislocation Dynamics[J]. Physical Review Letters, 2006, 97(7):75504-75505.
    Lefebvre S, Devincre B, Hoc T. Yield Stress Strengthening in Ultrafine Grained Metals:A Two Dimesional Simlualtion of Dislocation Dynamics[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(4):788-802.
  • 加载中
图(1)
计量
  • 文章访问数:  365
  • HTML全文浏览量:  114
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-06-27
  • 修回日期:  2019-06-15
  • 刊出日期:  2019-06-28

目录

    /

    返回文章
    返回