留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有优异循环性能的三维石墨烯气凝胶对有机染料的有效去除

丁月玲 田真 李慧君 王晓敏

丁月玲, 田真, 李慧君, 王晓敏. 具有优异循环性能的三维石墨烯气凝胶对有机染料的有效去除. 新型炭材料, 2019, 34(4): 315-324. doi: 10.1016/S1872-5805(19)60017-X
引用本文: 丁月玲, 田真, 李慧君, 王晓敏. 具有优异循环性能的三维石墨烯气凝胶对有机染料的有效去除. 新型炭材料, 2019, 34(4): 315-324. doi: 10.1016/S1872-5805(19)60017-X
DING Yue-ling, TIAN Zhen, LI Hui-jun, WANG Xiao-min. Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability. New Carbon Mater., 2019, 34(4): 315-324. doi: 10.1016/S1872-5805(19)60017-X
Citation: DING Yue-ling, TIAN Zhen, LI Hui-jun, WANG Xiao-min. Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability. New Carbon Mater., 2019, 34(4): 315-324. doi: 10.1016/S1872-5805(19)60017-X

具有优异循环性能的三维石墨烯气凝胶对有机染料的有效去除

doi: 10.1016/S1872-5805(19)60017-X
基金项目: 国家自然科学基金(U1710256,51572184).
详细信息
    作者简介:

    丁月玲,硕士.E-mail:2513805218@qq.com

    通讯作者:

    王晓敏,教授.E-mail:wangxiaomin@tyut.edu.cn

  • 中图分类号: TQ127.1+1

Efficient removal of organic dyes using a three-dimensional graphene aerogel with excellent recycling stability

Funds: National Natural Science Foundation of China (U1710256, 51572184). Corresponding authors:WANG Xiao-min, Professor. E-mail:wangxiaomin@tyut.edu.cn
  • 摘要: 以聚乙烯醇(PVA)为交联剂,采用一步水热法和冷冻干燥法制备了氮掺杂石墨烯气凝胶(N-GA)。PVA的加入使GA的三维多孔结构更加稳定,提高了GA的循环性能。氮源的加入为染料的吸附提供了较多的的吸附位点。在pH=8和pH=2时,PVA-N/GA对亚甲基蓝(MB,98.39%)和甲基橙(MO,78.78%)表现出优异的吸附能力。MB和MO的吸附过程符合准二阶动力学模型,且遵循单层朗缪尔等温线模型和多层弗伦德里希等温线模型。此外,PVA-N/GA具有良好的可重复性。PVA-N/GA对染料的吸附主要归因于π-π键,氢键和静电相互作用。
  • Hu X, Jia L J, Cheng J, et al. Magnetic ordered mesoporous carbon materials for adsorption of minocycline from aqueous solution:Preparation, characterization and adsorption mechanism[J]. Journal of Hazardous Materials, 2019, 362:1-8.
    Chen C, Zhu X Y, Chen B L. Covalently cross-linked graphene oxide aerogel with stable structure for high-efficiency water purification[J]. Chemical Engineering Journal, 2018, 354:896-904.
    Zhao Q, Zhu X, Chen B. Stable graphene oxide/poly (ethyleneimine)3D aerogel with tunable surface charge for high performance selective removal of ionic dyes from water[J]. Chemical Engineering Journal, 2018, 334:1119-1127.
    Xiao J, Lv W, Xie Z, et al. L-cysteine-reduced graphene oxide/poly (vinyl alcohol) ultralight aerogel as a broad-spectrum adsorbent for anionic and cationic dyes[J]. Journal of Materials Science, 2017, 52(10):5807-5821.
    Xue R, Xin X, Wang L, et al. A systematic study of the effect of molecular weights of polyvinyl alcohol on polyvinyl alcohol-graphene oxide composite hydrogels[J]. Physical Chemistry Chemical Physics, 2015, 17(7):5431-5440.
    Xiao J, Zhang J, Lv W, et al. Multifunctional graphene/poly (vinyl alcohol) aerogels:In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils[J]. Carbon, 2017, 123:354-363.
    Zhang S Y, Sun J, Hu D, et al. Large-sized graphene oxide/modified tourmaline nanoparticle aerogel with stable honeycomb-like structure for high-efficiency PM2.5 capture[J]. Journal of Materials Chemistry A, 2018, 6(33):16139-16148.
    Jiang L, Sheng L, Chen X, et al. Construction of nitrogen-doped porous carbon buildings using interconnected ultra-small carbon nanosheets for ultra-high rate supercapacitors[J]. Journal of Materials Chemistry A, 2016, 4(29):11388-11396.
    Kim J, Han J, Ha D, et al. Synthesis of nitrogen and boron co-doped carbon (CNB) and their CO2 capture properties:From porous to hollow granule structure[J]. Journal of Materials Chemistry A, 2014, 2(39):16645-16651.
    Liu S, Xie K, Li Y, et al. Graphene oxide wrapped hierarchical porous carbon-sulfur composite cathode with enhanced cycling and rate performance for lithium sulfur batteries[J]. Rsc Advances, 2015, 5(8):5516-5522.
    Wang L, He X, Li J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angewandte Chemie-International Edition, 2012, 51(36):9034-9037.
    Dolinskii I Y, Katin K P, Grishakov K S, et al. Influence of Mechanical Stretching on Adsorption Properties of Nitrogen-Doped Graphene[J]. Physics of the Solid State, 2018, 60(4):821-825.
    Yang F, Sun L, Xie W, et al. Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis:An efficient adsorbent for atrazine removal[J]. Science of the Total Environment, 2017, 607:1391-1399.
    Ren H, Shi X, Zhu J, et al. Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption[J]. Journal of Materials Science, 2016, 51(13):6419-6427.
    Fu D H, Zhan Y H, Yan N, et al. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites[J]. Express Polymer Letters, 2015, 9(7):597-607.
    Zhan Y, Lavorgna M, Buonocore G, et al. Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing[J]. Journal of Materials Chemistry, 2012, 22(21):10464-10468.
    Zhan Y, Wu J, Xia H, et al. Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process[J]. Macromolecular Materials and Engineering, 2011, 296(7):590-602.
    Dai H, Huang Y, Huang H. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue[J]. Carbohydrate Polymers, 2018, 185:1-11.
    Zhan W, Gao L, Fu X, et al. Green synthesis of amino-functionalized carbon nanotube-graphene hybrid aerogels for high performance heavy metal ions removal[J]. Applied Surface Science, 2019, 467:1122-1133.
    Wang S, Li X, Liu Y, et al. Nitrogen-containing amino compounds functionalized graphene oxide:Synthesis, characterization and application for the removal of pollutants from wastewater:A review[J]. Journal of Hazardous Materials, 2018, 342:177-191.
    Rahmani Z, Rashidi A M, Kazemi A, et al. N-doped reduced graphene oxide aerogel for the selective adsorption of oil pollutants from water:Isotherm and kinetic study[J]. Journal of Industrial and Engineering Chemistry, 2018, 61:416-426.
    Ye S, Liu Y, Feng J. Low-density, mechanical compressible, water-induced self-recoverable graphene aerogels for water treatment[J]. ACS Applied Materials&Interfaces, 2017, 9(27):22456-22464.
    E L, Li W, Sun J, et al. N-doped carbon aerogels obtained from APMP fiber aerogels saturated with rhodamine dye and their application as supercapacitor electrodes[J]. Applied Sciences-Basel, 2019, 9(4).
    Liu Y Z, Li Y F, Yuan S X, et al. Synthesis of 3D N, S dual-doped porous carbons with ultrahigh surface areas for highly efficient oxygen reduction reactions[J]. ChemElectroChem, 2018, 5:3506-3513.
    Xiang C, Guo R, Lan J, et al. Self-assembling porous 3D titanium dioxide-reduced graphene oxide aerogel for the tunable absorption of oleic acid and RhodamineB dye[J]. Journal of Alloys and Compounds, 2018, 735:246-252.
    Chen L, Feng S, Zhao D, et al. Efficient sorption and reduction of U (VI) on zero-valent iron-polyaniline-graphene aerogel ternary composite[J]. Journal of Colloid and Interface Science, 2017, 490:197-206.
    Jia Z, Li Z, Li S, et al. Adsorption performance and mechanism of methylene blue on chemically activated carbon spheres derived from hydrothermally-prepared poly (vinyl alcohol) microspheres[J]. Journal of Molecular Liquids, 2016, 220:56-62.
    Ren F, Li Z, Tan W Z, et al. Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue[J]. Journal of Colloid and Interface Science, 2018, 532:58-67.
    Xiang C, Wang C, Guo R, et al. Synthesis of carboxymethyl cellulose-reduced graphene oxide aerogel for efficient removal of organic liquids and dyes[J]. Journal of Materials Science, 2019, 54(2):1872-1883.
    Wang G, Jia L T, Hou B, et al. Self-assembled graphene monoliths:properties, structures and their pH-dependent self-assembly behavior[J]. New Carbon Materials, 2015, 30(1):30-40.
    Pan M, Shan C, Zhang X, et al. Environmentally friendly in situ regeneration of graphene aerogel as a model conductive adsorbent[J]. Environmental Science&Technology, 2018, 52(2):739-746.
    Yang Q, Lu R, Ren S, et al. Three dimensional reduced graphene oxide/ZIF-67 aerogel:Effective removal cationic and anionic dyes from water[J]. Chemical Engineering Journal, 2018, 348:202-211.
    Cheng Z, Liao J, He B, et al. One-step fabrication of graphene oxide enhanced magnetic composite gel for highly efficient dye adsorption and catalysis[J]. ACS Sustainable Chemistry&Engineering, 2015, 3(7):1677-1685.
    Fu X, Zhan Y, Meng Y, et al. Graphene oxide/poly (vinyl alcohol) hydrogels with good tensile properties and reusable adsorption properties[J]. Plastics Rubber and Composites, 2017, 46(2):53-59.
    Shi Y C, Wang A J, Wu X L, et al. Green-assembly of three-dimensional porous graphene hydrogels for efficient removal of organic dyes[J]. Journal of Colloid and Interface Science, 2016, 484:254-262.
    Shu D, Feng F, Han H, et al. Prominent adsorption performance of amino-functionalized ultra-light graphene aerogel for methyl orange and amaranth[J]. Chemical Engineering Journal, 2017, 324:1-9.
    Liang Q, Luo H, Geng J, et al. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr (VI)[J]. Chemical Engineering Journal, 2018, 338:62-71.
    Nandi B K, Goswami A, Purkait M K. Removal of cationic dyes from aqueous solutions by kaolin:Kinetic and equilibrium studies[J]. Applied Clay Science, 2009, 42(3-4):583-590.
    Zhang Y, Yan X, Yan Y, et al. The utilization of a three-dimensional reduced graphene oxide and montmorillonite composite aerogel as a multifunctional agent for wastewater treatment[J]. Rsc Advances, 2018, 8(8):4239-4248.
    Pan L, Liu S, Oderinde O, et al. Facile fabrication of graphene-based aerogel with rare earth metal oxide for water purification[J]. Applied Surface Science, 2018, 427:779-786.
    Saber-Samandari S, Saber-Samandari S, Joneidi-Yekta H, et al. Adsorption of anionic and cationic dyes from aqueous solution using gelatin-based magnetic nanocomposite beads comprising carboxylic acid functionalized carbon nanotube[J]. Chemical Engineering Journal, 2017, 308:1133-1144.
    Liu C, Liu H, Xu A, et al. In situ reduced and assembled three-dimensional graphene aerogel for efficient dye removal[J]. Journal of Alloys and Compounds, 2017, 714:522-529.
    Yu R, Shi Y, Yang D, et al. Graphene oxide/chitosan aerogel microspheres with honeycomb cobweb and radially oriented microchannel structures for broad spectrum and rapid adsorption of water contaminants[J]. ACS Applied Materials&Interfaces, 2017, 9(26):21809-21819.
  • 加载中
图(1)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  92
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 录用日期:  2019-09-10
  • 修回日期:  2019-07-29
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回