留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO2活化对聚硅氧烷裂解SiC衍生炭孔结构的影响

段力群 马青松 马林建 董璐 王波 代晓青 张波

段力群, 马青松, 马林建, 董璐, 王波, 代晓青, 张波. CO2活化对聚硅氧烷裂解SiC衍生炭孔结构的影响. 新型炭材料, 2019, 34(4): 367-372. doi: 10.1016/S1872-5805(19)60019-3
引用本文: 段力群, 马青松, 马林建, 董璐, 王波, 代晓青, 张波. CO2活化对聚硅氧烷裂解SiC衍生炭孔结构的影响. 新型炭材料, 2019, 34(4): 367-372. doi: 10.1016/S1872-5805(19)60019-3
DUAN Li-qun, MA Qing-song, MA Lin-jian, DONG Lu, WANG Bo, DAI Xiao-qing, ZHANG Bo. Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons. New Carbon Mater., 2019, 34(4): 367-372. doi: 10.1016/S1872-5805(19)60019-3
Citation: DUAN Li-qun, MA Qing-song, MA Lin-jian, DONG Lu, WANG Bo, DAI Xiao-qing, ZHANG Bo. Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons. New Carbon Mater., 2019, 34(4): 367-372. doi: 10.1016/S1872-5805(19)60019-3

CO2活化对聚硅氧烷裂解SiC衍生炭孔结构的影响

doi: 10.1016/S1872-5805(19)60019-3
基金项目: 江苏省自然科学基金(BK20170754).
详细信息
    作者简介:

    段力群,博士.E-mail:850082427@qq.com

    通讯作者:

    马青松,研究员.E-mail:nudtmqs1975@163.com

  • 中图分类号: TQ127.1+1

Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons

Funds: Natural Foundation of Jiangsu Province, China(BK20170754).
  • 摘要: 经聚硅氧烷裂解转化得到碳化硅粉体,然后对其进行氯化处理得到炭,再通过CO2活化处理得到具有高比表面积(1 316.8~1 929.0 m2·g-1)的微孔炭(SiC-DC)材料。研究了CO2活化温度、时间对SiC衍生多孔炭结构的影响。采用氮气吸附法、X-ray衍射光谱(XRD)、扫描电镜(SEM)及透射电镜(TEM)等技术对SiC-DC样品微观结构随活化温度、时间演变进行表征分析。结果表明,CO2活化处理可以有效调控SiC-DC的孔结构,而对其结晶性影响很小,且活化处理后样品保持着SiC粉体或未活化SiC-DC样品的原有形态和微观结构(如石墨带)。对于已活化SiC-DC样品,比表面积(SSA)、总孔容(Vtot)及微孔孔容都随活化温度、时间增加而增加,但同时活化产率逐渐降低。相比未活化样品,SiC-DC在950℃条件下活化处理2 h后,SSA和Vtot值分别增加了46.5%、86.4%,主要原因是经活化处理,微孔孔容明显增加。
  • Vakifahmetoglu C, Presser V, Yeon S H, et al. Enhanced hydrogen and methane gas storage of silicon oxycarbide derived carbon[J]. Microporous Mesoporous Mater, 2011, 144:105-112.
    Gogotsi Y, Dash R K, Yushin G, et al. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage[J]. J Amer Chem Soc, 2005, 127:16006-16007.
    Yushin G, Dash R, Jagiello J, et al. Carbide-derived carbons:Effect of pore size on hydrogen uptake and heat of adsorption[J]. Adv Funct Mater, 2006, 16:2288-2293.
    Li Y F, Liu Y Z, Liang Y, et al. Preparation of nitrogen-doped graphene/activated carbon composite papers to enhance energy storage in supercapacitors[J]. Appl. Phys. A, 2017, 123:566.
    Sun G, Song W, Liu X, et al. New concept of in situ carbide-derived carbon/xerogel nanocomposite materials for electrochemical capacitor[J]. Mater Lett, 2011, 65:1392-1395.
    Wei F, Zhang H F, He X J, et al. Synthesis of porous carbons from coal tar pitch for high-performance supercapacitors[J]. New Carbon Materials, 2019, 34(2):132-139.
    Kotina I M, Lebedev V M, Ilves A G, et al. Study of the lithium diffusion in nanoporous carbon materials produced from carbides[J]. J Non-Crystal Solids, 2002, 299/302:815-819.
    Yushin G, Hoffmana E N, Barsoum M W, et al. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines[J]. Biomaterials, 2006, 27:5755-5762.
    Yachamaneni S, Yushin G, Yeon S H, et al. Mesoporous carbide-derived carbon for cytokine removal from blood plasma[J]. Biomaterials, 2010, 31:4789-4794.
    McNallan M, Ersoy D, Zhu R, et al. Nano-structured carbide-derived carbon films and their tribology[J]. Tsinghua Sci Technol, 2005, 10(6):699-703.
    Erdemir A, Kovalchenko A, McNallan M J, et al. Effects of high-temperature hydrogenation treatment on sliding friction and wear behavior of carbide-derived carbon films[J]. Surf Coat Technol, 2004, 188:588-593.
    Schmirler M, Glenk F, Etzold B J M. In-situ thermal activation of carbide-derived carbon[J]. Carbon, 2011, 49:3679-3686.
    Gogotsi Y, Portet C, Osswald S, et al. Importance of pore size in high-pressure hydrogen storage by porous carbons[J]. Int J hydrogen energy, 2009, 34:6314-6319.
    Yeon S H, Osswald S, Gogotsi Y, et al. Enhanced methane storage of chemically and physically activated carbide-derived carbon[J]. J Power Sources, 2009, 191:560-567.
    Osswald S, Portet C, Gogotsi Y, et al. Porosity control in nanoporous carbide-derived carbon by oxidation in air and carbon dioxide[J]. J Solid State Chem, 2009, 182:1733-1741.
    Xia K, Gao Q, Song S, et al. CO2 activation of ordered porous carbon CMK-1 for hydrogen storage[J]. Int J hydrogen energy, 2008, 33:116-123.
    Yusof N, Ismail A F, Rana D, et al. Effects of the activation temperature on the polyacrylonitrile/acrylamide-based activated carbon fibers[J]. Mater Lett, 2012, 82:16-18.
    Belot V, Corriu R J P, Leclercq D, et al. Silicon oxycarbide glasses with low O/Si ratio from organosilicon precursors[J]. J. Non-Crystalline Solids. 1994, 176:33-44.
    Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems[J]. Pure Appl Chem, 1985, 57(4):603-619.
    Kleebe H J, Blum Y D. SiOC ceramic with high excess free carbon[J]. J Eur Ceram Soc, 2008, 28:1037-1042.
    Xu T, Ma Q, Chen Z. The effect of environment pressure on high temperature stability of silicon oxycarbide glasses derived from polysiloxane[J]. Mater Lett, 2011, 65:1538-1541.
    Duan L, Ma Q. Effect of pyrolysis temperature on the pore structure evolution of polysiloxane-derived ceramics[J]. Ceram Int, 2012, 38:2667-2671.
    Fukushima M, Zhou Y, Yoshizawa Y I. Fabrication and microstructural characterization of porous silicon carbide with nano-sized powders[J]. Mater Sci Eng B, 2008, 148:211-214.
    Ma Q, Ma Y, Chen Z. Fabrication and characterization of nanoporous SiO2 ceramics via pyrolysis of silicone resin filled with nanometer SiO2 powders[J]. Ceram Int, 2010, 36:2269-2272.
    Duan L, Ma Q, Chen Z. Fabrication and CO2 capture performance of silicon carbide derived carbons from polysiloxane[J]. Microporous Mesoporous Mater, 2015, 203:24-31.
  • 加载中
图(1)
计量
  • 文章访问数:  300
  • HTML全文浏览量:  94
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-29
  • 录用日期:  2019-09-10
  • 修回日期:  2019-06-30
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回