留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高荧光量子产率碳点的制备并用于Cu2+灵敏检测、荧光绘画和细胞成像

刘文 张荣 康玉 张晓瑛 王浩江 李丽红 刁海鹏 魏文珑

刘文, 张荣, 康玉, 张晓瑛, 王浩江, 李丽红, 刁海鹏, 魏文珑. 高荧光量子产率碳点的制备并用于Cu2+灵敏检测、荧光绘画和细胞成像. 新型炭材料, 2019, 34(4): 390-402. doi: 10.1016/S1872-5805(19)60021-1
引用本文: 刘文, 张荣, 康玉, 张晓瑛, 王浩江, 李丽红, 刁海鹏, 魏文珑. 高荧光量子产率碳点的制备并用于Cu2+灵敏检测、荧光绘画和细胞成像. 新型炭材料, 2019, 34(4): 390-402. doi: 10.1016/S1872-5805(19)60021-1
LIU Wen, ZHANG Rong, KANG Yu, ZHANG Xiao-ying, WANG Hao-jiang, LI Li-hong, DIAO Hai-peng, WEI Wen-long. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Mater., 2019, 34(4): 390-402. doi: 10.1016/S1872-5805(19)60021-1
Citation: LIU Wen, ZHANG Rong, KANG Yu, ZHANG Xiao-ying, WANG Hao-jiang, LI Li-hong, DIAO Hai-peng, WEI Wen-long. Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells. New Carbon Mater., 2019, 34(4): 390-402. doi: 10.1016/S1872-5805(19)60021-1

高荧光量子产率碳点的制备并用于Cu2+灵敏检测、荧光绘画和细胞成像

doi: 10.1016/S1872-5805(19)60021-1
基金项目: 国家自然科学基金(21705104);山西省重点研发项目(201703D321015-2);山西省自然科学基金青年基金(201701D221064);山西医科大学科技创新项目(C01201003);山西医科大学博士启动基金项目(BS201723).
详细信息
    通讯作者:

    刘文,博士,实验师.E-mail:liuwen@sxmu.edu.cn;魏文珑,博士,教授.E-mail:weiwenlong@tyut.edu.cn

  • 中图分类号: TQ127.1+1

Preparation of nitrogen-doped carbon dots with a high fluorescence quantum yield for the highly sensitive detection of Cu2+ ions, drawing anti-counterfeit patterns and imaging live cells

Funds: National Natural Science Foundation of China (21705104); Key Research and Development Projects of Shanxi Province (201703D321015-2); Youth Science Foundation of Shanxi Province (201701D221064); Science & Technology Innovation Fund of Shanxi Medical University (C01201003); Ph. D Startup Fund of Shanxi Medical University (BS201723).
  • 摘要: 随着科学技术的进步,荧光碳质材料越来越多受到人们的关注。具有高荧光量子产率碳点的研制对其在荧光传感等应用具有重要意义。本文以柠檬酸铵和三乙基四胺为原料,采用一步微波法制备了一种低成本、绿色环保、荧光量子产率高(29.83%)的水溶性荧光碳点(N-CDs),并对N-CDs的结构和光学性能进行了表征。N-CDs具有高荧光、良好的生物相容性和光学稳定性。与其它已报道的碳点纳米材料相比,N-CDs具有更加突出的光学性质以及对Cu2+高选择、高敏感的检测,即合成的N-CDs的荧光强度能够被Cu2+猝灭且在0.01~11 μM存在良好的线性,对Cu2+的检出限为4.5 nM (S/N=3),进一步应用到实际水样中Cu2+含量的测定。此外,合成的N-CDs还可用于绘制荧光图案。最后,将强发光、低毒的N-CDs应用于活细胞(SMMC-7721)的荧光图像和细胞中监测Cu2+的存在,表明合成的N-CDs具有广阔的应用前景。
  • Kim J, Piao Y, Hyeon T. Multifunctional nanostructured materials for multimodal imaging, and simultaneous imaging and therapy[J]. Chemical Society Reviews, 2009, 38(2):372-390.
    Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing[J]. Chemical Society Reviews, 2007, 36(6):993-1017.
    Lin P, Chen J W, Chang L W, Wu J P, et al. Computational and ultrastructural toxicology of a nanoparticle, quantum dot 705, in mice[J]. Environmental Science&Technology, 2008, 42(16):6264-6270.
    Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments[J]. Journal of the American Chemical Society, 2004, 126(40):12736-12737.
    Lim S Y, Shen W, Gao Z. Carbon quantum dots and their applications[J]. Chemical Society Reviews, 2015, 44(1):362-381.
    Hola K, Zhang Y, Wang Y, et al. Carbon dots-Emerging light emitters for bioimaging, cancer therapy and optoelectronics[J]. Nano Today, 2014, 9(5):590-603.
    Yu S, Su X, Du J, et al. The cytotoxicity of water-soluble carbon nanotubes on human embryonic kidney and liver cancer cells[J]. New Carbon Materials, 2018, 33(1):36-45.
    Diao H, Li T, Zhang R, et al. Facile and green synthesis of fluorescent carbon dots with tunable emission for sensors and cells imaging[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2018, 200:226-234.
    Liu S, Tian J, Wang L, et al. Hydrothermal treatment of grass:a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (Ⅱ) ions[J]. Advanced Materials, 2012, 24(15):2037-2041.
    Wang C, Xu Z, Cheng H, et al. A hydrothermal route to water-stable luminescent carbon dots as nanosensors for pH and temperature[J]. Carbon, 2015, 82:87-95.
    Van Tam T, Trung N B, Kim H R, et al. One-pot synthesis of N-doped graphene quantum dots as a fluorescent sensing platform for Fe3+ ions detection[J]. Sensors and Actuators B:Chemical, 2014, 202:568-573.
    Li Y, Zhao Y, Cheng H, et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups[J]. Journal of the American Chemical Society, 2011, 134(1):15-18.
    Liu W, Diao H, Chang H, et al. Green synthesis of carbon dots from rose-heart radish and application for Fe3+ detection and cell imaging[J]. Sensors and Actuators B:Chemical, 2017, 241:190-198.
    Dong Y, Wang R, Li G, et al. Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions[J]. Analytical Chemistry, 2012, 84(14):6220-6224.
    He G, Xu M, Shu M, et al. Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe3+ detection and cellular bioimaging[J]. Nanotechnology, 2016, 27(39):395706.
    Liu Q, Guo B, Rao Z, et al. Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging[J]. Nano Letters, 2013, 13(6):2436-2441.
    Liu W, Cui Y, Li T, et al. Green and Facile Synthesis of Highly Photoluminescent Nitrogen-doped Carbon Dots for Sensors and Cell Imaging[J]. Chemistry Letters, 2018, 47(4):421-424.
    Zhou L, Lin Y, Huang Z, et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices[J]. Chemical Communications, 2012, 48(8):1147-1149.
    Li Z, Ni Y, Kokot S. A new fluorescent nitrogen-doped carbon dot system modified by the fluorophore-labeled ssDNA for the analysis of 6-mercaptopurine and Hg (Ⅱ)[J]. Biosensors and Bioelectronics, 2015, 74:91-97.
    Wu Y F, Wu H C, Kuan C H, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy[J]. Scientific Reports, 2016, 6:21170.
    Kumari N, Dey N, Bhattacharya S. Remarkable role of positional isomers in the design of sensors for the ratiometric detection of copper and mercury ions in water[J]. RSC Advances, 2014, 4(9):4230-4238.
    Patil S R, Nandre J P, Jadhav D, et al. Imatinib intermediate as a two in one dual channel sensor for the recognition of Cu2+ and I- ions in aqueous media and its practical applications[J]. Dalton Transactions, 2014, 43(35):13299-13306.
    Song Y, Qu K, Xu C, et al. Visual and quantitative detection of copper ions using magnetic silica nanoparticles clicked on multiwalled carbon nanotubes[J]. Chemical Communications, 2010, 46(35):6572-6574.
    Gaetke L M, Chow C K. Copper toxicity, oxidative stress, and antioxidant nutrients[J]. Toxicology, 2003, 189(1-2):147-163.
    Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans[J]. The American Journal of Clinical Nutrition, 1998, 67(5):952S-959S.
    Martínez R, Espinosa A, Tarraga A, et al. A new bis (pyrenyl) azadiene-based probe for the colorimetric and fluorescent sensing of Cu (Ⅱ) and Hg (Ⅱ)[J]. Tetrahedron, 2010, 66(21):3662-3667.
    Huang H, Chen R, Ma J, et al. Graphitic carbon nitride solid nanofilms for selective and recyclable sensing of Cu2+ and Ag+ in water and serum[J]. Chemical Communications, 2014, 50(97):15415-15418.
    Ganiga M, Cyriac J. Understanding the photoluminescence mechanism of nitrogen-doped carbon dots by selective interaction with copper ions[J]. ChemPhysChem, 2016, 17(15):2315-2321.
    Qu K, Wang J, Ren J, et al. Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (Ⅲ) ions and dopamine[J]. Chemistry-A European Journal, 2013, 19(22):7243-7249.
    De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice[J]. RSC Advances, 2013, 3(22):8286-8290.
    He J, Zhang H, Zou J, et al. Carbon dots-based fluorescent probe for "off-on" sensing of Hg (Ⅱ) and I-[J]. Biosensors and Bioelectronics, 2016, 79:531-535.
    Huang H, Lv J J, Zhou D L, et al. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions[J]. RSC Advances, 2013, 3(44):21691-21696.
    Yang Z, Xu M, Liu Y, et al. Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate[J]. Nanoscale, 2014, 6(3):1890-1895.
    Anilkumar P, Wang X, Cao L, et al. Toward quantitatively fluorescent carbon-based "quantum" dots[J]. Nanoscale, 2011, 3(5):2023-2027.
    Qiao Z A, Wang Y, Gao Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation[J]. Chemical Communications, 2010, 46(46):8812-8814.
    Ding H, Yu S B, Wei J S, et al. Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism[J]. ACS Nano, 2015, 10(1):484-491.
    Hu S, Trinchi A, Atkin P, et al. Tunable photoluminescence across the entire visible spectrum from carbon dots excited by white light[J]. Angewandte Chemie International Edition, 2015, 54(10):2970-2974.
    Wang L, Wang Y, Xu T, et al. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties[J]. Nature Communications, 2014, 5:5357.
    Baker S N, Baker G A. Luminescent carbon nanodots:emergent nanolights[J]. Angewandte Chemie International Edition, 2010, 49(38):6726-6744.
    Salinas-Castillo A, Ariza-Avidad M, Pritz C, et al. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources[J]. Chemical Communications, 2013, 49(11):1103-1105.
    Shi L, Li Y, Li X, et al. Controllable synthesis of green and blue fluorescent carbon nanodots for pH and Cu2+ sensing in living cells[J]. Biosensors and Bioelectronics, 2016, 77:598-602.
    Sahu S, Behera B, Maiti T K, et al. Simple one-step synthesis of highly luminescent carbon dots from orange juice:application as excellent bio-imaging agents[J]. Chemical Communications, 2012, 48(70):8835-8837.
    Liu Y, Zhao Y, Zhang Y. One-step green synthesized fluorescent carbon nanodots from bamboo leaves for copper (Ⅱ) ion detection[J]. Sensors and Actuators B:Chemical, 2014, 196:647-652.
    Gedda G, Lee C Y, Lin Y C, et al. Green synthesis of carbon dots from prawn shells for highly selective and sensitive detection of copper ions[J]. Sensors and Actuators B:Chemical, 2016, 224:396-403.
    Wang L, Bi Y, Gao J, et al. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples[J]. RSC Advances, 2016, 6(89):85820-85828.
    Youngá Kim D. Ultraviolet and blue emitting graphene quantum dots synthesized from carbon nano-onions and their comparison for metal ion sensing[J]. Chemical Communications, 2015, 51(20):4176-4179.
    Tekin E, Smith P J, Hoeppener S, et al. Inkjet printing of luminescent CdTe nanocrystal-polymer composites[J]. Advanced Functional Materials, 2007, 17(1):23-28.
    Yang S, Wang C F, Chen S. A release-induced response for the rapid recognition of latent fingerprints and formation of inkjet-printed patterns[J]. Angewandte Chemie International Edition, 2011, 50(16):3706-3709.
    Gong X, Hu Q, Paau M C, et al. Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging[J]. Nanoscale, 2014, 6(14):8162-8170.
    Zhai Y, Zhu Z, Zhu C, et al. Multifunctional water-soluble luminescent carbon dots for imaging and Hg2+ sensing[J]. Journal of Materials Chemistry B, 2014, 2(40):6995-6999.
    Liu C, Zhang P, Zhai X, et al. Nano-carrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence[J]. Biomaterials, 2012, 33(13):3604-3613.
    Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence[J]. Journal of the American Chemical Society, 2006, 128(24):7756-7757.
  • 加载中
图(1)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  114
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-01
  • 录用日期:  2019-09-10
  • 修回日期:  2019-08-01
  • 刊出日期:  2019-08-28

目录

    /

    返回文章
    返回