留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯酚存在下制备的还原氧化石墨烯水凝胶的电化学性能

高湘丽 刘翠仙 韩高义 宋华 肖尧明 周海涵

高湘丽, 刘翠仙, 韩高义, 宋华, 肖尧明, 周海涵. 苯酚存在下制备的还原氧化石墨烯水凝胶的电化学性能. 新型炭材料, 2019, 34(5): 403-416. doi: 10.1016/S1872-5805(19)60022-3
引用本文: 高湘丽, 刘翠仙, 韩高义, 宋华, 肖尧明, 周海涵. 苯酚存在下制备的还原氧化石墨烯水凝胶的电化学性能. 新型炭材料, 2019, 34(5): 403-416. doi: 10.1016/S1872-5805(19)60022-3
GAO Xiang-li, LIU Cui-xian, HAN Gao-yi, SONG Hua, XIAO Yao-ming, ZHOU Hai-han. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors. New Carbon Mater., 2019, 34(5): 403-416. doi: 10.1016/S1872-5805(19)60022-3
Citation: GAO Xiang-li, LIU Cui-xian, HAN Gao-yi, SONG Hua, XIAO Yao-ming, ZHOU Hai-han. Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors. New Carbon Mater., 2019, 34(5): 403-416. doi: 10.1016/S1872-5805(19)60022-3

苯酚存在下制备的还原氧化石墨烯水凝胶的电化学性能

doi: 10.1016/S1872-5805(19)60022-3
基金项目: 国家自然科学基金(U1510121,21574076,21501113,61504076,21407100);山西省自然科学基金(2014011016-1,2015021129);山西省高校青年科技创新项目(020352901014);山西省研究生教育创新项目(2016BY009);山西"1331工程"重点创新研究团队.
详细信息
    作者简介:

    高湘丽,硕士.E-mail:462443237@qq.com;刘翠仙,博士,讲师.E-mail:1065303340@qq.com.

    通讯作者:

    韩高义,教授.E-mail:han_gaoyis@sxu.edu.cn;肖尧明,教授.E-mail:ymxiao@sxu.edu.cn

  • 中图分类号: TQ127.1+1

Reduced graphene oxide hydrogels prepared in the presence of phenol for high-performance electrochemical capacitors

Funds: National Natural Science Foundation of China (U1510121, 21574076, 21501113, 61504076, 21407100); National Natural Science Foundation of Shanxi province (2014011016-1, 2015021129); The Program for the Top Young and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (020352901014); Graduate student education innovation project in Shanxi Province (2016BY009); Shanxi "1331 Project" Key Innovative Research Team.
  • 摘要: 在苯酚存在下,通过水热法制备了还原氧化石墨烯水凝胶(rGOHPhs),详细地对样品进行了表征并系统地研究了氧化石墨烯与苯酚的比例和水热处理温度对所得水凝胶电容性能的影响。结果表明,制备的样品都具有三维网络结构,与不存在苯酚时制备的水凝胶(rGOHs)相比,在优化条件下制备的rGOHPhs的比表面积(422 m2 g-1),但具有大的总孔体积,说明在制备过程中,苯酚既有还原作用还具有结构调节作用。以制备的水凝胶为电极材料,组装了对称电化学电容器并采用两电极法对其性能进行了测试。发现在1 mV s-1的扫描速率下,材料的比电容可达260.0 F g-1,远大于rGOH的182.5F g-1;并且rGOHPhs具有良好的倍率性能和循环稳定性,在500 mV s-1的电流密度下其比电容值仍达138.1 F g-1;经过12 000圈循环,仍可保留其初始电容值的98.3%。基于电极材料质量,在功率密度分别为0.125和16 kW kg-1时,组装的电容器的能量密度可达8.9和2.0 Wh Kg-1。这种发达的多孔网络归因于苯酚及其氧化产物醌吸附在rGO表面作为间隔和氧化还原对来提供赝电容。
  • Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon[J]. Nature Nanotechnology, 2010, 5(9): 651-654.
    Xu R, Lin J M, Wu J H, et al. A high-performance pseudocapacitive electrode material for supercapacitors based on the unique NiMoO4/NiO nanoflowers[J]. Applied Surface Science, 2019, 463: 721-731.
    Huang H F, Xu L Q, Tang Y M, et al. Facile synthesis of nickel network supported three-dimensional graphene gel as a lightweight and binder-free electrode for high rate performance supercapacitor application[J]. Nanoscale, 2014, 6(4): 2426-2433.
    Zhou G M, Wang D W, Feng L, et al. The effect of carbon particle morphology on the electrochemical properties of nanocarbon/polyaniline composites in supercapacitors[J]. New Carbon Materials, 2011, 26(3): 180-186.
    Xia X H, Zhang Y Q, Fan Z X, et al. Novel metal@carbon spheres core-shell arrays by controlled self-assembly of carbon nanospheres: A stable and flexible supercapacitor electrode[J]. Advanced Energy Materials, 2015, 5(6): 1401709.
    Yang Q, Pang S K, Yung K C. Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes[J]. Journal of Power Sources, 2016, 311: 144-152.
    Lu Q, Xu Y Y, Mu S J, et al. The effect of nitrogen and/or boron doping on the electrochemical performance of non-caking coal-derived activated carbons for use as supercapacitor electrodes[J]. New Carbon Materials, 2017, 32(5): 442-450.
    Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    Wang X Q, Ding Y J, Lu H, et al. Chemoselective solution synthesis of pyrazolic-structure-rich nitrogen-doped graphene for supercapacitors and electrocatalysis[J]. Chemical Engineering Journal, 2018, 347: 754-762.
    Cui K, Hu S C, Li Y K. Nitrogen-doped graphene-decorated LiVPO4F nanocomposite as high-voltage cathode material for rechargeable lithium-ion batteries[J]. Journal of Power Sources, 2016, 325: 465-473.
    Lin T Q, Chen I W, Liu F X, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513.
    Sarpoushi M R, Nasibi M, Moshrefifar M, et al. Electrochemical investigation of graphene/nanoporous carbon black for supercapacitors[J]. Materials Science in Semiconductor Processing, 2015, 33: 89-93.
    Li C, Zhang X, Wang K, et al. Three dimensional graphene networks for supercapacitor electrode materials[J]. New Carbon Materials, 2015, 30(3): 193-206.
    Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442(7100): 282-286.
    Chen P, Yang J J, Li S S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor[J]. Nano Energy, 2013, 2(2): 249-256.
    Cong H P, Ren X C, Wang P, et al. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process[J]. ACS Nano, 2012, 6(3): 2693-2703.
    Xu Y, Tao Y, Zheng X Y, et al. A metal-free supercapacitor electrode material with a record high volumetric capacitance over 800 F cm-3[J]. Advanced Materials, 2015, 27(48): 8082-8087.
    Lee S H, Kim H W, Hwang J O, et al. Three-dimensional self-assembly of graphene oxide platelets into mechanically flexible macroporous carbon films[J]. Angewandte Chemie, 2010, 122(52): 10282-10286.
    Yao B W, Chen J, Huang L, et al. Base-induced liquid crystals of graphene oxide for preparing elastic graphene foams with long-range ordered microstructures[J]. Advanced Materials, 2016, 28(8): 1623-1629.
    Pei S F, Zhao J P, Du J H, et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon, 2010, 48(15): 4466-4474.
    Ji C C, Xu M W, Bao S J, et al. Self-assembly of three-dimensional interconnected graphene-based aerogels and its application in supercapacitors[J]. Journal of colloid and interface science, 2013, 407: 416-424.
    Zhang L, Shi G Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability[J]. Journal of Physical Chemistry C, 2011, 115(34): 17206-17212.
    Chang Y Z, Han G Y, Yuan J P, et al. Using hydroxylamine as a reducer to prepare N-doped graphene hydrogels used in high-performance energy storage[J]. Journal of Power Sources, 2013, 238: 492-500.
    Vickery J L, Patil A J, Mann S. Fabrication of graphene-polymer nanocomposites with higher-order three-dimensional architectures[J]. Advanced Materials, 2009, 21(21): 2180-2184.
    Cao X H, Shi Y M, Shi W H, et al. Preparation of novel 3D graphene networks for supercapacitor applications[J]. Small, 2011, 7(22): 3163-3168.
    Wasalathilake K C, Galpaya D G D, Ayoko G A, et al. Understanding the structure-property relationships in hydrothermally reduced graphene oxide hydrogels[J]. Carbon, 2018, 137: 282-290.
    Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process[J]. ACS Nano, 2010, 4(7): 4324-4330.
    Shen J F, Yan B, Li T, et al. Study on graphene-oxide-based polyacrylamide composite hydrogels[J]. Composites Part A: Applied Science and Manufacturing, 2012, 43(9): 1476-1481.
    An H R, Li Y, Long P, et al. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors[J]. Journal of Power Sources, 2016, 312: 146-155.
    Xu Y X, Lin Z Y, Huang X Q, et al. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films[J]. ACS Nano, 2013, 7(5): 4042-4049.
    Tao H C, Zhu S C, Yang X L, et al. Systematic investigation of reduced graphene oxide foams for high-performance supercapacitors[J]. Electrochimica Acta, 2016, 190: 168-177.
    Wang J L, Shi Z X, Fan J C, et al. Self-assembly of graphene into three-dimensional structures promoted by natural phenolic acids[J]. Journal of Materials Chemistry, 2012, 22(42): 22459-22466.
    Liao Y Q, Huang Y L, Shu D, et al. Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials[J]. Electrochimica Acta, 2016, 194: 136-142.
    Chen W F, Yan L F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures[J]. Nanoscale, 2011, 3(8): 3132-3137.
    Zhang L B, Chen G Y, Hedhili M N, et al. Three-dimensional assemblies of graphene prepared by a novel chemical reduction-induced self-assembly method[J]. Nanoscale, 2012, 4(22): 7038-7045.
    Bai Y L, Yang X F, He Y B, et al. Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance[J]. Electrochimica Acta, 2016, 187: 543-551.
    Yang X W, Zhu J W, Qiu L, et al. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors[J]. Advanced Materials, 2011, 23(25): 2833-2838.
    Sheng K X, Xu Y X, Li C, et al. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide[J]. New Carbon Materials, 2011, 26(1): 9-15.
    Zhao Z F, Mei T, Chen Y, et al. One-pot synthesis of lightweight nitrogen-doped graphene hydrogels with supercapacitive properties[J]. Materials Research Bulletin, 2015, 68: 245-253.
    Wang Y, Shi Z X, Yin J. Facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites[J]. ACS Applied Materials & Interfaces, 2011, 3(4): 1127-1133.
    Zhang X T, Sui Z Y, Xu B, et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources[J]. Journal of Materials Chemistry, 2011, 21(18): 6494-6497.
    Liu C X, Han G Y, Chang Y Z, et al. Capacitive performances of reduced graphene oxide hydrogel prepared by using sodium hypophosphite as reducer[J]. Chinese Journal of Chemistry, 2016, 34(1): 89-97.
    Mendez A, Isikli S, Diaz R. Influence of impregnation of activated carbon electrodes with p-benzoquinone on supercapacitor performance[J]. Electrochemistry, 2013, 81(10): 853-856.
    Liu Z Y, Fu D Y, Liu F F, et al. Mesoporous carbon nanofibers with large cage-like pores activated by tin dioxide and their use in supercapacitor and catalyst support[J]. Carbon, 2014, 70: 295-307.
    Xu J D, Gao Q M, Zhang Y L, et al. Preparing two-dimensional microporous carbon from Pistachio nutshell with high areal capacitance as supercapacitor materials[J]. Scientific Reports, 2014, 4: 5545(1-6).
    Wang G X, Yang J, Park J, et al. Facile synthesis and characterization of graphene nanosheets[J]. Journal of Physical Chemistry C, 2008, 112(22): 8192-8195.
    Jin Y H, Huang S, Zhang M, et al. A green and efficient method to produce graphene for electrochemical capacitors from graphene oxide using sodium carbonate as a reducing agent[J]. Applied Surface Science, 2013, 268: 541-546.
    Mitra M, Chatterjee K, Kargupta K, et al. Reduction of graphene oxide through a green and metal-free approach using formic acid[J]. Diamond and Related Materials, 2013, 37: 74-79.
    Xing L B, Zhang J L, Zhang J, et al. Three dimensional reduced graphene hydrogels with tunable pore sizes using thiourea dioxide for electrode materials in supercapacitors[J]. Electrochimica Acta, 2015, 176: 1288-1295.
    Ruland W. X-ray diffraction studies on carbon and graphite[J]. Chemistry and physics of carbon, 1968, 4: 1-84.
    Ogale A A, lin C, Anderson D P, et al. Orientation and dimensional changes in mesophase pitch-based carbon fibers[J]. Carbon, 2002, 40(8): 1309-1319.
    Zhou X J, Zhang J L, Wu H X, et al. Reducing graphene oxide via hydroxylamine: a simple and efficient route to graphene[J]. Journal of Physical Chemistry C, 2011, 115(24): 11957-11961.
    Ma Q, Song J P, Jin C, et al. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid[J]. Carbon, 2013, 54: 36-41.
    Crowther A C, Ghassaei A, Jung N, et al. Strong charge-transfer doping of 1 to 10 layer graphene by NO2[J]. ACS Nano, 2012, 6(2): 1865-1875.
    Tiwari J N, Mahesh K, Le N H, et al. Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions[J]. Carbon, 2013, 56: 173-182.
    Han T H, Huang Y K, Tan A T L, et al. Steam etched porous graphene oxide network for chemical sensing[J]. Journal of the American Chemical Society, 2011, 133(39): 15264-15267.
    Zhang H T, Zhang L, Chen J, et al. One-step synthesis of hierarchically porous carbons for high-performance electric double layer supercapacitors[J]. Journal of Power Sources, 2016, 315: 120-126.
    Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6): 937-950.
    He Y M, Chen W J, Li X D, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes[J]. ACS Nano, 2013, 7(1): 174-182.
    Wu Z S, Winter A, Chen L, et al. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors[J]. Advanced Materials, 2012, 24(37): 5130-5135.
    Saha U, Jaiswal R, Goswami T H. A facile bulk production of processable partially reduced graphene oxide as superior supercapacitor electrode material[J]. Electrochimica Acta, 2016, 196: 386-404.
    Zheng B N, Gao C. Preparation of graphene nanoscroll/polyaniline composites and their use in high performance supercapacitors[J]. New Carbon Materials, 2016, 31(3): 315-320.
    Ryu K S, Lee Y G, Kim K M, et al. Electrochemical capacitor with chemically polymerized conducting polymer based on activated carbon as hybrid electrode[J]. Synthetic Metals, 2005, 153: 89-92.
    Portet C, Taberna P L, Simon P, et al. High power density electrodes for carbon supercapacitor applications[J]. Electrochimica Acta, 2005, 50(20): 4174-4181.
    Taberna P L, Simon P, Fauvarque J F. Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors[J]. Journal of the Electrochemical Society, 2003, 150(3): A292-A300.
    Bello A, Barzegar F, Momodu D, et al. Symmetric supercapacitors based on porous 3D interconnected carbon framework[J]. Electrochimica Acta, 2015, 151: 386-392.
    Hou J H, Cao C B, Ma X L, et al. From rice bran to high energy density supercapacitors: a new route to control porous structure of 3D carbon[J]. Scientific Reports, 2014, 4: 7260.
  • 加载中
图(1)
计量
  • 文章访问数:  416
  • HTML全文浏览量:  98
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-20
  • 录用日期:  2019-11-04
  • 修回日期:  2019-09-30
  • 刊出日期:  2019-10-28

目录

    /

    返回文章
    返回