留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

功能化纳米碳管对水溶液中Pb2+吸附的动力学、平衡与等温线

Hamzeh Eyni Hasan Tahermansouri Farhoush Kiani Mansour Jahangiri

Hamzeh Eyni, Hasan Tahermansouri, Farhoush Kiani, Mansour Jahangiri. 功能化纳米碳管对水溶液中Pb2+吸附的动力学、平衡与等温线. 新型炭材料, 2019, 34(6): 512-523. doi: 10.1016/S1872-5805(19)60027-2
引用本文: Hamzeh Eyni, Hasan Tahermansouri, Farhoush Kiani, Mansour Jahangiri. 功能化纳米碳管对水溶液中Pb2+吸附的动力学、平衡与等温线. 新型炭材料, 2019, 34(6): 512-523. doi: 10.1016/S1872-5805(19)60027-2
Hamzeh Eyni, Hasan Tahermansouri, Farhoush Kiani, Mansour Jahangiri. Kinetics, equilibrium and isotherms of Pb2+ adsorption from aqueous solutions on carbon nanotubes functionalized with 3-amino-5a,10a-dihydroxybenzo indeno furan-10-one. New Carbon Mater., 2019, 34(6): 512-523. doi: 10.1016/S1872-5805(19)60027-2
Citation: Hamzeh Eyni, Hasan Tahermansouri, Farhoush Kiani, Mansour Jahangiri. Kinetics, equilibrium and isotherms of Pb2+ adsorption from aqueous solutions on carbon nanotubes functionalized with 3-amino-5a,10a-dihydroxybenzo indeno furan-10-one. New Carbon Mater., 2019, 34(6): 512-523. doi: 10.1016/S1872-5805(19)60027-2

功能化纳米碳管对水溶液中Pb2+吸附的动力学、平衡与等温线

doi: 10.1016/S1872-5805(19)60027-2
详细信息
    通讯作者:

    Hasan Tahermansouri,Ph.D,Associate Professor.E-mail:h.tahermansuri@iauamol.ac.ir,tahermansuri@yahoo.com

  • 中图分类号: TQ127.1+1

Kinetics, equilibrium and isotherms of Pb2+ adsorption from aqueous solutions on carbon nanotubes functionalized with 3-amino-5a,10a-dihydroxybenzo indeno furan-10-one

More Information
    Corresponding author: Hasan Tahermansouri,Ph.D,Associate Professor.E-mail:h.tahermansuri@iauamol.ac.ir,tahermansuri@yahoo.com
  • 摘要: 以3-Amino-5a,10a-dihydroxybenzo indeno furan-10-one(ADIF)功能化改性的纳米碳管(MWCNT-ADIF)为吸附剂,除去水溶液中的Pb2+。采用FT-IR,SEM,TGA及DTG对MWCNT-ADIF样品进行表征。探讨了pH值、Pb2+初始浓度、吸附量和接触时间对吸附动力学与平衡的影响。采用4种二参数模型(Langmuir、Freundlich、Tempkin与Dubinin-Radushkevich)和6种三参数模型(Redlich-Peterson,Khan,Sips,Radke-Prausnitz,Toth,Hil)研究Pb2+吸附等温线。通过伪一阶动力学模型、伪二阶动力学模型和粒子内扩散模型分析吸附动力学。采用3种误差分析方法、相关系数、卡方值和平均相对误差来确定最佳拟合等温线和动力学模型。结果表明,吸附动力学与伪二阶动力学模型相吻合。误差分析表明,三参数模型比二参数模型更适合描述Pb2+吸附数据。等温线数据与Langmuir、Hill和Sips models相符。MWCNT-ADIF在pH=3溶液中能脱除92%的Pb2+,并且回收后的MWCNT-ADIF能重复使用5个再生周期。
  • Marques P A S S, Rosa M F, Pinheiro H M. pH effects on the removal of Cu2+, Cd2+ and Pb2+ from aqueous solution by waste brewery waste[J]. Bioprocess Eng, 2000, 23:135-141.
    Gogoi H, Leiviskä T, Heiderscheidt E, et al. Removal of metals from industrial wastewater and urban runoff by mineral and bio-based sorbents[J]. Journal of Environmental Management, 2018, 209:316-327.
    Kobielska P A, Howarth A J, Farha O K, et al. Metal-organic frameworks for heavy metal removal from water[J]. Coordination Chemistry Reviews, 2018, 358:92-107.
    Nidheesh P V, Zhou M, Oturan M A. An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes[J]. Chemosphere, 2018, 197:210-227.
    Khalil A M E, Eljamal O, Amen T W M, et al. Optimized nano-scale zero-valent iron supported on treated activated carbon for enhanced nitrate and phosphate removal from water[J]. Chemical Engineering Journal, 2017, 309:349-365.
    Zhang J, Brutus T E, Cheng J, et al. Fluoride removal by Al, Ti, and Fe hydroxides and coexisting ion effect[J]. Journal of Environmental Sciences, 2017, 57:190-195.
    Kim H, Kim M, Lee W, et al. Rapid removal of radioactive cesium by polyacrylonitrile nanofibers containing Prussian blue[J]. Journal of Hazardous Materials, 2018, 347:106-113.
    Lessa E F, Nunes M L, Fajardo A R. Chitosan/waste coffee-grounds composite:An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water[J]. Carbohydrate Polymers, 2018, 189:257-266.
    Singh C K, Sahu J N, Mahalik K K, et al. Studies on the removal of Pb(II) from wastewater by activated carbon developed from Tamarind wood activated with sulphuric acid[J]. J. Hazard. Mater, 2008, 153:221-228.
    Shukla V, Shukla P, Tiwari A. Lead poisoning[J]. Indian Journal of Medical Specialities, Doi: 10.1016/j.injms.2018.04.003.
    Kushwaha A, Hans N, Kumar S, et al. A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies[J]. Ecotoxicology and Environmental Safety, 2018, 147:1035-1045.
    Hargreaves A J, Vale P, Whelan J, et al. Impacts of coagulation-flocculation treatment on the size distribution and bioavailability of trace metals (Cu, Pb, Ni, Zn) in municipal wastewater[J]. Water Research, 2018, 128:120-128.
    Rahman N, Haseen U, Rashid M. Synthesis and characterization of polyacrylamide zirconium (IV) iodate ion exchanger:Its application for selective removal of lead (II) from wastewater[J]. Arabian Journal of Chemistry, 2017, 10:s1765-s1773.
    Tahermansouri H, Mohamadian Ahi R, Kiani F. Kinetic, equilibrium and isotherm studies of cadmium removal from aqueous solutions by oxidized multi-walled carbon nanotubes and the functionalized ones with thiosemicarbazide and their toxicity investigations:a comparison[J]. J Chin Chem Soc, 2014, 61:1188-1198.
    Yin N, Wang K, Wang L, et al. Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb (II) removal[J]. Chemical Engineering Journal, 2016, 306:619-628.
    Németh G, Mlinárik L, Török Á. Adsorption and chemical precipitation of lead and zinc from contaminated solutions in porous rocks:Possible application in environmental protection[J]. Journal of African Earth Sciences, 2016, 122:98-106.
    Sophia C A, Lima E C. Removal of emerging contaminants from the environment by adsorption[J]. Ecotoxicology and Environmental Safety, 2018, 150:1-17.
    Alimohammady M, Jahangiri M, Kiani F, et al. Highly efficient simultaneous adsorption of Cd(II), Hg(II) and As(III) ions from aqueous solutions by modification of graphene oxide with 3-aminopyrazole:central composite design optimization[J]. New J Chem, 2017, 41:8905-8919.
    Mohseni Kafshgari M, Tahermansouri H. Development of a graphene oxide/chitosan nanocomposite for the removal of picric acid from aqueous solutions:Study of sorption parameters[J]. Colloids and Surfaces B:Biointerfaces, 2017, 160:671-681.
    Khakpour R, Tahermansouri H. Synthesis, characterization and study of sorption parameters ofmulti-walled carbon nanotubes/chitosan nanocomposite for the removal of picric acid from aqueous solutions[J]. International Journal of Biological Macromolecules, 2018, 109:598-610.
    Dutta D, Kumar S, Bodhaditya Das R, et al. Removal of Cu(II) and Pb(II) from aqueous solutions using nanoporous materials[J]. Russian Journal of Physical Chemistry A, 2018, 92:976-983.
    Altun T, Kar Y. Removal of Cr (VI) from aqueous solution by pyrolytic charcoals[J]. New Carbon Materials, 2016, 31:501-509.
    Tsiamis A, Taylor S E. Adsorption behavior of asphaltenes and resins on kaolinite[J]. Energy Fuels, 2017, 31:10576-10587.
    Silva M, Castellanos L, Ottens M, Capture and purification of polyphenols using functionalized hydrophobic resins[J]. Ind Eng Chem Res, 2018, 57:5359-5369.
    Alimohammady M, Jahangiri M, Kiani F, et al. Design and evaluation of functionalized multi-walled carbon nanotubes by 3-aminopyrazole for the removal of Hg(II) and As(III) ions from aqueous solution[J]. Res Chem Intermed, 2018, 44:69-92.
    Ihsanullah A A, Al-Amer A M, Laoui T, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes:Critical review of adsorption applications[J]. Separation and Purification Technology, 2016, 157:141-161.
    Xiao D, Li H, He H, et al. Adsorption performance of carboxylated multi-wall carbon nanotube-Fe3O4 magnetic hybrids for Cu(II) in water[J]. New Carbon Materials, 2014, 29:15-25.
    Shouman M A, Fathy N A. Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye[J]. Journal of Water Process Engineering, 2018, 23:165-173.
    Gil A, Santamaría L, Korili S A. Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes[J]. Colloid and Interface Science Communications, 2018, 22:25-28.
    Sun J, Wu L, Li Y. Removal of lead ions from polyether sulfone/Pb(II)-imprinted multi-walled carbon nanotubes mixed matrix membrane[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 78:219-229.
    Yang K, Lou Z, Fu R, et al. Multiwalled carbon nanotubes incorporated with or without amino groups for aqueous Pb(II) removal:Comparison and mechanism study[J]. Journal of Molecular Liquids, 2018, 260:149-158.
    Al Hamouz O C S, Adelabu I O, Saleh T A. Novel cross-linked melamine based polyamine/CNT composites for lead ions removal[J]. Journal of Environmental Management, 2017, 192:163-170.
    Albakri M A, Abdelnaby M M, Saleh T A, et al. New series of benzene-1,3,5-triamine based cross-linked polyamines and polyamine/CNT composites for lead ion removal from aqueous solutions[J]. Chemical Engineering Journal, 2018, 333:76-84.
    Luzardo F H M, Velasco F G, Correia I K S, et al. Removal of lead ions from water using a resin of mimosa tannin and carbon nanotubes[J]. Environmental Technology & Innovation, 2017, 7:219-228.
    Li Z, Chen J, Ge Y. Removal of lead ion and oil droplet from aqueous solution by lignin-grafted carbon nanotubes[J]. Chemical Engineering Journal, 2017, 308:809-817.
    Jahangiri M, Kiani F, Tahermansouri H, et al. The removal of lead ions from aqueous solutions by modified multi-walled carbon nanotubes with 1-isatin-3-thiosemicarbazone[J]. Journal of Molecular Liquids, 2015, 212:219-226.
    Inyang M, Gao B E, Zimmerman A, et al. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars[J]. Environmental Science and Pollution Research, 2015, 22:1868-1876.
    Mubarak N M, Sahu J N, Abdullah E C, et al. Rapid adsorption of toxic Pb(II) ions from aqueous solution using multiwall carbon nanotubes synthesized by microwave chemical vapor deposition technique[J]. Journal of Environmental Sciences, 2016, 45:143-155.
    Tahermansouri H, Beheshti M. Kinetic and equilibrium study of lead (II) removal by functionalized multiwalled carbon nanotubes with isatin derivative from aqueous solutions[J]. Bull Korean Chem Soc, 2013, 34:3391-3398.
    Bullington' J L, Dodd J H. Synthesis of tetrahydroindeno[1,2-b]indol-l0-ones and their rearrangement to
    benzopyrano[4,3-b]indol-5-ones[J]. J Org Chem, 1993, 58:4833-4836.
    Foo K Y, Hameed B H. Insights into the modeling of adsorption isotherm systems[J]. Chem Eng J, 2010, 156:2-10.
    Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe, kungliga svenska vetenskapsakademiens[J]. Handlingar, 1898, 24:1-39.
    Weber W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. J Sanit Eng Div,1963, 89:31-59.
    Langmuir I. The constitution and fundamental properties of solids and liquids[J]. J Am Chem Soc, 1916, 38:2221-2295.
    Fasfous I I, Dawoud J N. Uranium (VI) sorption by multiwalled carbon nanotubes from aqueous solution[J]. Applied Surface Science, 2012, 259:433-440.
    Freundlich H M F. over the adsorption in solution[J]. J Phys Chem, 1906, 57:385-471.
    Tempkin M J, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysis[J]. Acta Physicochim. URSS, 1940, 12:327-356.
    Dubinin M M, Radushkevich L V. The equation of the characteristic curve of the activated charcoal[J]. Proc Acad Sci USSR Phys Chem Sect, 1947, 55:331-337.
    Gunay A, Arslankaya E, Tosun I. Lead removal from aqueous solution by natural and pretreated clinoptilolite:adsorption equilibrium and kinetics[J]. J Hazard Mater, 2007, 146:362-371.
    Hobson J P. Physical adsorption isotherms extending from ultra-high vacuum to vapor pressure[J]. J Phys Chem, 1969, 73:2720-2727.
    Singha B, Das S K. Adsorptive removal of Cu(II) from aqueous solution and industrial effluent using natural/agricultural wastes[J]. Colloids and Surfaces B, 2013, 107:97-106.
    Kausar A, Bhatti H N, MacKinnon G. Equilibrium, kinetic and thermodynamic studies on the removal of U(VI) by low cost agricultural waste[J]. Colloids and Surfaces B, 2013, 111:124-133.
    Hill A V. The possible effects of the aggregation of the molecules of hemoglobin on its dissociation curves[J]. J Physiol 1910, 40:iv-vii.
    Sips R. Combined form of Langmuir and Freundlich equations[J]. J Chem Phys, 1948,16:490-495.
    Redlich O, Peterson D L. A useful adsorption isotherm[J]. J Phys Chem, 1959, 63:1024-1026.
    Toth J. State equations of the solid gas interface layer[J]. Acta Chem. Acad. Hung, 1971,69:311-317.
    Khan A R, Ataullah R, Al-Haddad A. Equilibrium adsorption studies of some aromatic pollutants from dilute aqueous solutions on activated carbon at different temperatures[J]. J Colloid Interface Sci, 1997, 194:154-165.
    Vijayaraghavan K, Padmesh T V N, Palanivelu K, et al. Biosorption of nickel(II) ions onto Sargassum wightii:application of twoparameter and three-parameter isotherm models[J]. J Hazard Mater, 2006, 133:304.
  • 加载中
计量
  • 文章访问数:  413
  • HTML全文浏览量:  63
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-02
  • 录用日期:  2020-01-03
  • 修回日期:  2019-11-30
  • 刊出日期:  2019-12-28

目录

    /

    返回文章
    返回